Displaying publications 1 - 20 of 1429 in total

Abstract:
Sort:
  1. Soo KM, Khalid B, Ching SM, Tham CL, Basir R, Chee HY
    PeerJ, 2017;5:e3589.
    PMID: 28929009 DOI: 10.7717/peerj.3589
    BACKGROUND: Dengue viral infection is an acute infection that has the potential to have severe complications as its major sequela. Currently, there is no routine laboratory biomarker with which to predict the severity of dengue infection or monitor the effectiveness of standard management. Hence, this meta-analysis compared biomarker levels between dengue fever (DF) and severe dengue infections (SDI) to identify potential biomarkers for SDI.

    METHODS: Data concerning levels of cytokines, chemokines, and other potential biomarkers of DF, dengue hemorrhagic fever, dengue shock syndrome, and severe dengue were obtained for patients of all ages and populations using the Scopus, PubMed, and Ovid search engines. The keywords "(IL1* or IL-1*) AND (dengue*)" were used and the same process was repeated for other potential biomarkers, according to Medical Subject Headings terms suggested by PubMed and Ovid. Meta-analysis of the mean difference in plasma or serum level of biomarkers between DF and SDI patients was performed, separated by different periods of time (days) since fever onset. Subgroup analyses comparing biomarker levels of healthy plasma and sera controls, biomarker levels of primary and secondary infection samples were also performed, as well as analyses of different levels of severity and biomarker levels upon infection by different dengue serotypes.

    RESULTS: Fifty-six studies of 53 biomarkers from 3,739 dengue cases (2,021 DF and 1,728 SDI) were included in this meta-analysis. Results showed that RANTES, IL-7, IL-8, IL-10, IL-18, TGF-b, and VEGFR2 levels were significantly different between DF and SDI. IL-8, IL-10, and IL-18 levels increased during SDI (95% CI, 18.1-253.2 pg/mL, 3-13 studies, n = 177-1,909, I(2) = 98.86%-99.75%). In contrast, RANTES, IL-7, TGF-b, and VEGFR2 showed a decrease in levels during SDI (95% CI, -3238.7 to -3.2 pg/mL, 1-3 studies, n = 95-418, I(2) = 97.59%-99.99%). Levels of these biomarkers were also found to correlate with the severity of the dengue infection, in comparison to healthy controls. Furthermore, the results showed that IL-7, IL-8, IL-10, TGF-b, and VEGFR2 display peak differences between DF and SDI during or before the critical phase (day 4-5) of SDI.

    DISCUSSION: This meta-analysis suggests that IL-7, IL-8, IL-10, TGF-b, and VEGFR2 may be used as potential early laboratory biomarkers in the diagnosis of SDI. This can be used to predict the severity of dengue infection and to monitor the effectiveness of treatment. Nevertheless, methodological and reporting limitations must be overcome in future research to minimize variables that affect the results and to confirm the findings.
    Matched MeSH terms: Biomarkers*
  2. Seow P, Narayanan V, Romelean RJ, Wong JHD, Win MT, Chandran H, et al.
    Acad Radiol, 2020 02;27(2):180-187.
    PMID: 31155487 DOI: 10.1016/j.acra.2019.04.015
    RATIONALE AND PURPOSE: Our study evaluated the capability of magnetic resonance imaging in- and opposed-phase (IOP) derived lipid fraction as a novel prognostic biomarker of survival outcome in glioma.

    MATERIALS AND METHODS: We analyzed 46 histologically proven glioma (WHO grades II-IV) patients using standard 3T magnetic resonance imaging brain tumor protocol and IOP sequence. Lipid fraction was derived from the IOP sequence signal-loss ratio. The lipid fraction of solid nonenhancing region of glioma was analyzed, using a three-group analysis approach based on volume under surface of receiver-operating characteristics to stratify the prognostic factors into three groups of low, medium, and high lipid fraction. The survival outcome was evaluated, using Kaplan-Meier survival analysis and Cox regression model.

    RESULTS: Significant differences were seen between the three groups (low, medium, and high lipid fraction groups) stratified by the optimal cut-off point for overall survival (OS) (p ≤ 0.01) and time to progression (p ≤ 0.01) for solid nonenhancing region. The group with high lipid fraction had five times higher risk of poor survival and earlier time to progression compared to the low lipid fraction group. The OS plot stratified by lipid fraction also had a strong correlation with OS plot stratified by WHO grade (R = 0.61, p < 0.01), implying association to underlying histopathological changes.

    CONCLUSION: The lipid fraction of solid nonenhancing region showed potential for prognostication of glioma. This method will be a useful adjunct in imaging protocol for treatment stratification and as a prognostic tool in glioma patients.

    Matched MeSH terms: Biomarkers, Tumor/analysis*; Biomarkers*
  3. Noor ‘Ain, M.N., Nordashima, A.S., Mazne, M., Azyani, Y., Mohd Rohaizat, H.
    Medicine & Health, 2020;15(1):187-197.
    MyJurnal
    Karsinoma tiroid biasanya didiagnoskan berdasarkan kriteria morfologi tertentu. Dalam sesetengah kes, diagnosis yang tepat mungkin sukar apabila ciri-ciri morfologi adalah tidak ketara. Kajian ini menilai kegunaan Hector Battifora Mesothelial-1 (HBME-1) sebagai penanda immunohistokimia untuk membezakan tisu tiroid barah dengan bukan barah dan untuk membandingkan ekspresi HBME-1 dalam pelbagai jenis tisu tiroid. Sensitiviti dan spesifisiti HBME-1 sebagai penanda khusus untuk karsinoma tiroid juga dikaji. Sejumlah 54 kes barah dan 54 kes bukan barah tiroid yang didiagnos di Pusat Perubatan Universiti Kebangsaan Malaysia untuk tempoh tujuh tahun telah dikumpul. Semua kes diwarnai dengan HBME-1 dan dinilai oleh tiga pemerhati bebas. Kes-kes tersebut diberi skor berdasarkan nisbah pewarnaan dan dinilai sebagai skor 0 (kurang daripada 10%), 1+ (10-25%), 2+ (26-50%) atau 3+ (lebih daripada 50%). Di samping itu, perkaitan antara skor bagi kes barah dengan peringkat patologi tumor juga dikaji. HBME-1 menunjukkan ungkapan pewarnaan yang lebih signifikan dalam kes barah berbanding bukan barah (P
    Matched MeSH terms: Biomarkers, Tumor
  4. Quan KY, Yap CG, Jahan NK, Pillai N
    Diabetes Res Clin Pract, 2021 Dec;182:109122.
    PMID: 34742785 DOI: 10.1016/j.diabres.2021.109122
    BACKGROUND: Diabetic nephropathy (DN) is one of the catastrophic complications of type 2 diabetes mellitus (T2DM). 45% of DN patients progressed to End Stage Renal Disease (ESRD) which robs casualties of the quality of live. The challenge in early diagnosis of DN is it is asymptomatic in the early phase. Current gold standard test for screening and diagnosis of DN are nonspecific and are not sensitive in detecting DN early enough and subsequently monitor renal function during management and intervention plans. Recent studies reported various biomolecules which are associated with the onset of DN in T2DM using cutting-edge technologies. These biomolecules could be potential early biomarkers for DN. This review selectively identified potential early serum biomolecules which are potential candidates for developing an Early Biomarker Array Test for DN.

    METHODS: An advanced literature search was conducted on 4 online databases. Search terms used were "Diabetes Mellitus, Type 2", "Diabetic nephropathy", "pathogenesis" and "early biomarker. Filters were applied to capture articles published from 2010 to 2020, written in English, human or animal models and focused on serum biomolecules associated with DN.

    RESULTS: Five serum biomolecules have been evidently described as contributing pivotal roles in the pathophysiology of DN. MiR-377, miR-99b, CYP2E1, TGF-β1 and periostin are potential candidates for designing an early biomarker array for screening and diagnosis of early stages of DN. The five shortlisted biomolecules originates from endogenous biochemical processes which are specific to the progressive pathophysiology of DN.

    CONCLUSION: miR-377, miR-99b, CYP2E1, TGF-β1 and periostin are potential candidate biomolecules for diagnosing DN at the early phases and can be developed into a panel of endogenous biomarkers for early detection of DN in patients with T2DM. The outcomes of this study will be a stepping stone towards planning and developing an early biomarker array test for diabetic nephropathy. The proposed panel of early biomarkers for DN has potential of stratifying the stages of DN because each biomolecule appears at distinct stages in the pathophysiology of DN.

    Matched MeSH terms: Biomarkers
  5. Hamad RS, Al Abdulsalam NK, Elrefaiy MA, El-Araby RE
    Trop Biomed, 2022 Dec 01;39(4):559-568.
    PMID: 36602216 DOI: 10.47665/tb.39.4.012
    Hepatocellular carcinoma (HCC) is a highly lethal malignancy and clinically validated medications have not yet been developed since there are no reliable diagnostic and prognostic biomarkers. Based on bioinformatics tools, TGF-b1 gene was the first target gene of miRNA-122, therefore this study was intended to assess the potential interconnection between TGF-b1 and miRNA-122 as a diagnostic and prognostic biomarker in the progression of HCC in patients with chronic hepatitis C (CHC) genotype (4). In this study, 100 people were included and split into two groups; group I: CHC patients without HCC that were classified into patients CHC without cirrhosis and CHC cirrhotic patients, group II: CHC patients with HCC, and healthy volunteers as control. The expression of miRNA-122 and TGF-b1 genes were analyzed using Real-Time PCR. An upregulation of miRNA-122 gene in cirrhotic and HCC patients compared to both chronic HCV non-cirrhotic, and cirrhotic patients, while, a decrease in expression of TGF-b1 was found in cirrhotic patients compared to HCV non-cirrhotic patients. Although significantly downregulated in HCC patients. Regression analysis indicated that the expression levels of miRNA-122 and TGF-b1 could be regarded as important indicators of the alterations in cirrhotic and HCC patients versus HCV non-cirrhotic patients, also with the chances of HCC versus cirrhosis patients. Our data indicated an interaction between miRNA-122 and TGF-b1, regulated gene expression and recommended the use of these parameters as noninvasive predictive biomarkers and therapeutic targets for HCV induced liver cirrhosis and HCC.
    Matched MeSH terms: Biomarkers
  6. Lee TB, Kueh MTW, Jain V, Razavi AC, Alebna P, Chew NWS, et al.
    Curr Cardiol Rep, 2023 Dec;25(12):1783-1795.
    PMID: 37971635 DOI: 10.1007/s11886-023-01993-5
    PURPOSE OF REVIEW: The objective of this manuscript is to examine the current literature on non-alcoholic fatty liver disease (NAFLD) biomarkers and their correlation with cardiovascular disease (CVD) outcomes and cardiovascular risk scores.

    RECENT FINDINGS: There has been a growing appreciation for an independent link between NAFLD and CVD, culminating in a scientific statement by the American Heart Association in 2022. More recently, studies have begun to identify biomarkers of the three NAFLD phases as potent predictors of cardiovascular risk. Despite the body of evidence supporting a connection between hepatic biomarkers and CVD, more research is certainly needed, as some studies find no significant relationship. If this relationship continues to be robust and readily reproducible, NAFLD and its biomarkers may have an exciting role in the future of cardiovascular risk prediction, possibly as risk-enhancing factors or as components of novel cardiovascular risk prediction models.

    Matched MeSH terms: Biomarkers
  7. Mandal A, Mani AK, Lamech R, Anandajothi E, Venkatachalam SA, Dinakaran GK, et al.
    Biochem Genet, 2021 Aug;59(4):856-869.
    PMID: 33544298 DOI: 10.1007/s10528-021-10032-3
    Misleading identification and subsequent publications on biological, molecular, and aquaculture data of mangrove mud crab (genus Scylla de Hann 1833) is a major concern in many countries. In this study, multiple molecular markers were used for genetic identification of all four known mud crab species under genus Scylla collected from India, Philippines, Myanmar, Malaysia and Indonesia. Internal Transcribed Spacer (ITS-1), Polymerase chain reaction (PCR)-Restriction Fragment Length Polymorphism (PCR-RFLP) and PCR-based species-specific markers were used to resolve taxonomic ambiguity. PCR-RFLP techniques using NlaIV and BsaJI restriction endonucleases were efficient to differentiate four different mud crab species under genus Scylla with specific fragment profile. The results also justified the use of ITS-1 and PCR-based species-specific markers to identify mud crab species available in many countries quite rapidly and effectively. Several new molecular markers generated during the study are reported here to resolve the taxonomic ambiguity of Scylla species and the results reconfirmed that India is only having two commonly available mud crab species which was reported by the authors earlier.
    Matched MeSH terms: Biomarkers/analysis
  8. Rehiman SH, Lim SM, Neoh CF, Majeed ABA, Chin AV, Tan MP, et al.
    Ageing Res Rev, 2020 07;60:101066.
    PMID: 32294542 DOI: 10.1016/j.arr.2020.101066
    In order to gauge the impact of proteomics in discovery of Alzheimer's disease (AD) blood-based biomarkers, this study had systematically reviewed articles published between 1984-2019. Articles that fulfilled the inclusion criteria were assessed for risk of bias. A meta-analysis was performed for replicable candidate biomarkers (CB). Of the 1651 articles that were identified, 17 case-control and two cohort studies, as well as three combined case-control and longitudinal designs were shortlisted. A total of 207 AD and mild cognitive impairment (MCI) CB were discovered, with 48 reported in >2 studies. This review highlights six CB, namely alpha-2-macroglobulin (α2M)ps, pancreatic polypeptide (PP)ps, apolipoprotein A-1 (ApoA-1)ps, afaminp, insulin growth factor binding protein-2 (IGFBP-2)ps and fibrinogen-γ-chainp, all of which exhibited consistent pattern of regulation in >three independent cohorts. They are involved in AD pathogenesis via amyloid-beta (Aβ), neurofibrillary tangles, diabetes and cardiovascular diseases (CVD). Meta-analysis indicated that ApoA-1ps was significantly downregulated in AD (SMD = -1.52, 95% CI: -1.89, -1.16, p 
    Matched MeSH terms: Biomarkers/analysis
  9. Hadi H, Wan Shuaib WMA, Raja Ali RA, Othman H
    Medicina (Kaunas), 2022 Jul 28;58(8).
    PMID: 36013482 DOI: 10.3390/medicina58081015
    Background and Objectives: We aim to compare the diagnostic performance of Protein induced by vitamin K absence-II (PIVKA-II), a biomarker for hepatocellular carcinoma (HCC), and alpha-fetoprotein (AFP) in differentiating HCC and non-malignant high-risk (NMHR) groups and to determine their cut-off values. Materials and Methods: A total of 163 patients, including 40 with HCC and 123 with NMHR (100 with liver cirrhosis and 23 with non-cirrhotic high-risk patients) were prospectively enrolled. The levels of AFP and PIVKA-II were measured, and their cut-off values were determined. We calculated and compared the areas under the receiver operating characteristic (AUROC) curves of PIVKA-II, AFP, and their combination. Results: The levels of PIVKA-II and AFP were found to be significantly higher in the HCC compared to NMHR patients (p < 0.0001). For the differentiation of HCC from NMHR, the optimal cutoff values for PIVKA-II and AFP were 36.7 mAU/mL (90% sensitivity; 82.1% specificity) and 14.2 ng/mL (75% sensitivity; 93.5% specificity), respectively. The AUROC of PIVKA-II (0.905, p < 0.0001) was higher compared to AFP (0.869, p < 0.0001), but the combination of PIVKA−II and AFP gave the highest AUROC value (0.911, p < 0.0001). However, their differences were not statistically significant (AFP vs. PIVKA; p = 0.4775, AFP vs. Combination; p = 0.3808, PIVKA vs. Combination; p = 0.2268). Conclusions: PIVKA-II and AFP showed equal performance in detecting HCC in high-risk patients. AFP as a screening marker for HCC may be adequate, and replacing or adding the PIVKA-II test in current clinical practice may be of little value.
    Matched MeSH terms: Biomarkers, Tumor/metabolism
  10. Jayaraj R, Polpaya K, Kunale M, Kodiveri Muthukaliannan G, Shetty S, Baxi S, et al.
    Genes (Basel), 2022 Dec 10;13(12).
    PMID: 36553594 DOI: 10.3390/genes13122325
    Background: Chemoresistance is a significant barrier to combating head and neck cancer, and decoding this resistance can widen the therapeutic application of such chemotherapeutic drugs. This systematic review and meta-analysis explores the influence of microRNA (miRNA) expressions on chemoresistance in head and neck cancers (HNC). The objective is to evaluate the theragnostic effects of microRNA expressions on chemoresistance in HNC patients and investigate the utility of miRNAs as biomarkers and avenues for new therapeutic targets. Methods: We performed a comprehensive bibliographic search that included the SCOPUS, PubMed, and Science Direct bibliographic databases. These searches conformed to a predefined set of search strategies. Following the PRISMA guidelines, inclusion and exclusion criteria were framed upon completing the literature search. The data items extracted were tabulated and collated in MS Excel. This spreadsheet was used to determine the effect size estimation for the theragnostic effects of miRNA expressions on chemoresistance in HNC, the hazard ratio (HR), and 95% confidence intervals (95% CI). The comprehensive meta-analysis was performed using the random effects model. Heterogeneity among the data collected was assessed using the Q test, Tau2, I2, and Z measures. Publication bias of the included studies was checked using the Egger's bias indicator test, Orwin and classic fail-safe N test, Begg and Mazumdar rank collection test, and Duval and Tweedie's trim and fill methods. Results: After collating the data from 23 studies, dysregulation of 34 miRNAs was observed in 2189 people. These data were gathered from 23 studies. Out of the 34 miRNAs considered, 22 were up-regulated, while 12 were down-regulated. The TaqMan transcription kits were the most used miRNA profiling platform, and miR-200c was seen to have a mixed dysregulation. We measured the overall pooled effect estimate of HR to be 1.516 for the various analyzed miRNA at a 95% confidence interval of 1.303-1.765, with a significant p-value. The null hypothesis test's Z value was 5.377, and the p-value was correspondingly noted to be less than 0.0001. This outcome indicates that the risk of death is determined to be higher in up-regulated groups than in down-regulated groups. Among the 34 miRNAs that were investigated, seven miRNAs were associated with an improved prognosis, especially with the overexpression of these seven miRNAs (miR15b-5p, miR-548b, miR-519d, miR-1278, miR-145, miR-200c, Hsa- miR139-3p). Discussion: The findings reveal that intricate relationships between miRNAs' expression and chemotherapeutic resistance in HNC are more likely to exist and can be potential therapeutic targets. This review suggests the involvement of specific miRNAs as predictors of chemoresistance and sensitivity in HNC. The examination of the current study results illustrates the significance of miRNA expression as a theragnostic biomarker in medical oncology.
    Matched MeSH terms: Biomarkers, Tumor/genetics
  11. Mediani A, Baharum SN
    Methods Mol Biol, 2024;2745:77-90.
    PMID: 38060180 DOI: 10.1007/978-1-0716-3577-3_5
    Metabolomics can provide diagnostic, prognostic, and therapeutic biomarker profiles of individual patients because a large number of metabolites can be simultaneously measured in biological samples in an unbiased manner. Minor stimuli can result in substantial alterations, making it a valuable target for analysis. Due to the complexity and sensitivity of the metabolome, studies must be devised to maintain consistency, minimize subject-to-subject variation, and maximize information recovery. This effort has been aided by technological advances in experimental design, rodent models, and instrumentation. Proton Nuclear Magnetic Resonance (1H-NMR) spectroscopy of biofluids, such as plasma, urine, and faeces provide the opportunity to identify biomarker change patterns that reflect the physiological or pathological status of an individual patient. Metabolomics has the ultimate potential to be useful in a clinical context, where it could be used to predict treatment response and survival and for early disease diagnosis. During drug treatment, an individual's metabolic status could be monitored and used to predict deleterious effects. Therefore, metabolomics has the potential to improve disease diagnosis, treatment, and follow-up care. In this chapter, we demonstrate how a metabolomics study can be used to diagnose a disease by classifying patients as either healthy or pathological, while accounting for individual variation.
    Matched MeSH terms: Biomarkers/metabolism
  12. Jeon AJ, Teo YY, Sekar K, Chong SL, Wu L, Chew SC, et al.
    BMC Cancer, 2023 Feb 03;23(1):118.
    PMID: 36737737 DOI: 10.1186/s12885-022-10444-3
    BACKGROUND: Conventional differential expression (DE) testing compares the grouped mean value of tumour samples to the grouped mean value of the normal samples, and may miss out dysregulated genes in small subgroup of patients. This is especially so for highly heterogeneous cancer like Hepatocellular Carcinoma (HCC).

    METHODS: Using multi-region sampled RNA-seq data of 90 patients, we performed patient-specific differential expression testing, together with the patients' matched adjacent normal samples.

    RESULTS: Comparing the results from conventional DE analysis and patient-specific DE analyses, we show that the conventional DE analysis omits some genes due to high inter-individual variability present in both tumour and normal tissues. Dysregulated genes shared in small subgroup of patients were useful in stratifying patients, and presented differential prognosis. We also showed that the target genes of some of the current targeted agents used in HCC exhibited highly individualistic dysregulation pattern, which may explain the poor response rate.

    DISCUSSION/CONCLUSION: Our results highlight the importance of identifying patient-specific DE genes, with its potential to provide clinically valuable insights into patient subgroups for applications in precision medicine.

    Matched MeSH terms: Biomarkers, Tumor/genetics; Biomarkers, Tumor/metabolism
  13. Ahmed H, Paterson I, Aziz SA, Cremona O, Robinson M, Carrozzo M, et al.
    J Oral Pathol Med, 2023 Sep;52(8):710-717.
    PMID: 37339783 DOI: 10.1111/jop.13460
    BACKGROUND: Most oral squamous cell carcinoma patients present with late-stage disease. Early detection of the disease is considered to be the most effective way of improving patient outcomes. Several biomarkers have been identified as indicators of oral cancer development and progression; however, none have been translated into clinical practice. In this study, we have investigated the role of Epsin3, an endocytic adaptor protein, and Notch1, a transmembrane signalling protein, in oral carcinogenesis with a view to explore their potential as biomarkers.

    METHODS: Oral cancer cell lines and a normal oral keratinocyte cell line were used together with tissue samples of normal oral mucosa (n = 21), oral epithelial dysplasia (n = 74) and early stage (Stages I and II) oral squamous cell carcinoma (n = 31). Immunocytochemical staining, immunoblotting and real-time quantitative polymerase chain reaction (PCR) were performed to assess protein as well as gene expression levels.

    RESULTS: The expression levels of Epsin3 and Notch1 mRNA and protein are variable across different oral squamous cell carcinoma derived cell lines. Epsin3 was upregulated in oral epithelial dysplasia and oral squamous cell carcinoma tissues compared with normal epithelium. Overexpression of Epsin3 resulted in a significant reduction of Notch1 expression in oral squamous cell carcinoma. Notch1 was generally downregulated in the dysplasia and oral squamous cell carcinoma samples.

    CONCLUSION: Epsin3 is upregulated in oral epithelial dysplasia and oral squamous cell carcinoma and has the potential to be used as a biomarker for oral epithelial dysplasia. Notch signalling is downregulated in oral squamous cell carcinoma, possibly through an Epsin3-induced de-activation pathway.

    Matched MeSH terms: Biomarkers, Tumor/analysis; Biomarkers
  14. Atif S, Wahab NA, Ghafoor S, Saeed MQ, Ahmad A
    J Pak Med Assoc, 2021 Mar;71(3):938-942.
    PMID: 34057953 DOI: 10.47391/JPMA.1115
    Biomarkers are anatomical characteristics or naturally occurring measurable molecules indicating physiological or pathological state of an individual. These biomarkers have the potential to detect or predict diseases at an early stage, which is particularly beneficial in timely management of common complications of radiation therapy done in head and neck cancer treatment regime. Xerostomia is one of the most common oral complaints of radiation therapy. Saliva has an abundance of protein biomarkers; however, those related to post-radiation therapy xerostomia need to be explored further. Textural and imaging-based biomarkers are helpful in predicting xerostomia in such patients. This narrative review provides an account of salivary protein and imaging-based biomarkers of radiation therapy-induced xerostomia in head and neck cancer patients.
    Matched MeSH terms: Biomarkers
  15. Ainuddin Yushar Yusof, Rohaya Megat Abdul Wahab, Shahrul Hisham Zainal Ariffin
    MyJurnal
    Orthodontic tooth movement is a complex process involving tooth and periodontal
    tissue, which release enzymes and biomarkers. The aim of this study was to investigate enzymes
    activities of salivary fluid during orthodontic treatment, (Copied from article).
    Matched MeSH terms: Biomarkers
  16. Lee PY, Osman J, Low TY, Jamal R
    Bioanalysis, 2019 Oct;11(19):1799-1812.
    PMID: 31617391 DOI: 10.4155/bio-2019-0145
    Plasma and serum are widely used for proteomics-based biomarker discovery. However, analysis of these biofluids is highly challenging due to the complexity and wide dynamic range of their proteomes. Notably, highly abundant proteins tend to obscure the detection of potential biomarkers that are usually of lower concentrations. Among the strategies to resolve this problem are: depletion of high-abundance proteins, enrichment of low abundant proteins of interest and prefractionation. In this review, we focus on current and emerging depletion techniques used to enhance the detection and identification of the less abundant proteins in plasma and serum. We discuss the applications and contributions of these methods to proteomics analysis of plasma and serum alongside their limitations and future perspectives.
    Matched MeSH terms: Biomarkers
  17. Hermawan A, Amrillah T, Riapanitra A, Ong WJ, Yin S
    Adv Healthc Mater, 2021 10;10(20):e2100970.
    PMID: 34318999 DOI: 10.1002/adhm.202100970
    A fully integrated, flexible, and functional sensing device for exhaled breath analysis drastically transforms conventional medical diagnosis to non-invasive, low-cost, real-time, and personalized health care. 2D materials based on MXenes offer multiple advantages for accurately detecting various breath biomarkers compared to conventional semiconducting oxides. High surface sensitivity, large surface-to-weight ratio, room temperature detection, and easy-to-assemble structures are vital parameters for such sensing devices in which MXenes have demonstrated all these properties both experimentally and theoretically. So far, MXenes-based flexible sensor is successfully fabricated at a lab-scale and is predicted to be translated into clinical practice within the next few years. This review presents a potential application of MXenes as emerging materials for flexible and wearable sensor devices. The biomarkers from exhaled breath are described first, with emphasis on metabolic processes and diseases indicated by abnormal biomarkers. Then, biomarkers sensing performances provided by MXenes families and the enhancement strategies are discussed. The method of fabrications toward MXenes integration into various flexible substrates is summarized. Finally, the fundamental challenges and prospects, including portable integration with Internet-of-Thing (IoT) and Artificial Intelligence (AI), are addressed to realize marketization.
    Matched MeSH terms: Biomarkers
  18. Yong SJ, Halim A, Halim M, Liu S, Aljeldah M, Al Shammari BR, et al.
    Rev Med Virol, 2023 Mar;33(2):e2424.
    PMID: 36708022 DOI: 10.1002/rmv.2424
    Severe acute respiratory syndrome coronavirus 2 may inflict a post-viral condition known as post-COVID-19 syndrome (PCS) or long-COVID. Studies measuring levels of inflammatory and vascular biomarkers in blood, serum, or plasma of COVID-19 survivors with PCS versus non-PCS controls have produced mixed findings. Our review sought to meta-analyse those studies. A systematic literature search was performed across five databases until 25 June 2022, with an updated search on 1 November 2022. Data analyses were performed with Review Manager and R Studio statistical software. Twenty-four biomarkers from 23 studies were meta-analysed. Higher levels of C-reactive protein (Standardized mean difference (SMD) = 0.20; 95% CI: 0.02-0.39), D-dimer (SMD = 0.27; 95% CI: 0.09-0.46), lactate dehydrogenase (SMD = 0.30; 95% CI: 0.05-0.54), and leukocytes (SMD = 0.34; 95% CI: 0.02-0.66) were found in COVID-19 survivors with PCS than in those without PCS. After sensitivity analyses, lymphocytes (SMD = 0.30; 95% CI: 0.12-0.48) and interleukin-6 (SMD = 0.30; 95% CI: 0.12-0.49) were also significantly higher in PCS than non-PCS cases. No significant differences were noted in the remaining biomarkers investigated (e.g., ferritin, platelets, troponin, and fibrinogen). Subgroup analyses suggested the biomarker changes were mainly driven by PCS cases diagnosed via manifestation of organ abnormalities rather than symptomatic persistence, as well as PCS cases with duration of <6 than ≥6 months. In conclusion, our review pinpointed certain inflammatory and vascular biomarkers associated with PCS, which may shed light on potential new approaches to understanding, diagnosing, and treating PCS.
    Matched MeSH terms: Biomarkers
  19. Amin M, Yousuf M, Attaullah M, Ahmad N, Azra MN, Lateef M, et al.
    Environ Technol, 2023 Jun;44(14):2148-2156.
    PMID: 34962184 DOI: 10.1080/09593330.2021.2024276
    Organophosphates (OPs) and synthetic pyrethroids (SPs) are the most popular broad spectrum pesticides, used in agriculture as they have a strong pesticidal activity while also being biodegradable in the environment. The present study aimed to demonstrate the effects of these pesticides on the Acetylcholinesterase (AChE) activity in brain, gills and body muscles of Oreochromis niloticus - an important enzyme for the assessment and biomonitoring pollution caused by neurotoxins in the environment. The fish were exposed for 24 and 48 h to the LC0 concentrations of the malathion (1.425 mg/L), the chlorpyrifos (0.125 mg/L) and the λ-cyhalothrin (0.0039 mg/L), respectively. The activity of the AChE was significantly increased (p 
    Matched MeSH terms: Biomarkers
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links