Displaying publications 1 - 20 of 23 in total

Abstract:
Sort:
  1. Lee YZ, Ming-Tatt L, Lajis NH, Sulaiman MR, Israf DA, Tham CL
    Molecules, 2012 Dec 07;17(12):14555-64.
    PMID: 23222902 DOI: 10.3390/molecules171214555
    A sensitive and accurate high performance liquid chromatography with ultraviolet/visible light detection (HPLC-UV/VIS) method for the quantification of 2,6-bis-(4-hydroxy-3-methoxybenzylidene)-cyclohexanone (BHMC) in rat plasma was developed and validated. BHMC and the internal standard, harmaline, were extracted from plasma samples by a simple liquid-liquid extraction using 95% ethyl acetate and 5% methanol. Plasma concentration of BHMC and internal standard were analyzed by reversed phase chromatography using a C₁₈ column (150 × 4.6 mm I.D., particle size 5 µm) and elution with a gradient mobile phase of water and methanol at a flow rate of 1.0 mL/min. Detection of BHMC and internal standard was done at a wavelength of 380 nm. The limit of quantification was 0.02 µg/mL. The calibration curves was linear (R² > 0.999) over the concentration range of 0.02-2.5 µg/mL. Intra- and inter-day precision were less than 2% coefficient of variation. The validated method was then applied to a pharmacokinetic study in rats by intravenous administration of BHMC at a single dose of 10 mg/kg. Pharmacokinetic parameters such as half-life, maximum plasma concentration, volume of distribution, clearance and elimination rate constant for BHMC were calculated.
    Matched MeSH terms: Cyclohexanones/blood; Cyclohexanones/isolation & purification*; Cyclohexanones/pharmacokinetics; Cyclohexanones/chemistry
  2. Ling SK, Takashima T, Tanaka T, Fujioka T, Mihashi K, Kouno I
    Fitoterapia, 2004 Dec;75(7-8):785-8.
    PMID: 15567266
    A new megastigmane diglycoside was isolated from the leaves of Carallia brachiata. The structure was determined by spectroscopic methods as 3-hydroxy-5,6-epoxy-beta-ionol -3-O-beta-apiofuranosyl-(1-->6)-beta-glucopyranoside (1). Additionally, 29 known compounds consisting of two megastigmanes, one 1,2-dithiolane derivative, seven aromatic compounds, five condensed tannins, 12 flavonoids, and two glyceroglycolipids were isolated and identified.
    Matched MeSH terms: Cyclohexanones/chemistry*
  3. Shakri NM, Salleh WMNHW, Khamis S, Mohamad Ali NA
    Z Naturforsch C J Biosci, 2020 Nov 26;75(11-12):485-488.
    PMID: 32966236 DOI: 10.1515/znc-2020-0090
    This study was aimed to investigate the chemical compositions of the essential oils from Goniothalamus macrophyllus and Goniothalamus malayanus growing in Malaysia. The essential oils were obtained by hydrodistillation and fully characterized by gas chromatography (GC-FID) and gas chromatography-mass spectrometry (GC-MS). Analyses of the essential oils from G. macrophyllus and G. malayanus resulted in 93.6 and 95.4% of the total oils, respectively. The major components of G. macrophyllus oil were germacrene D (25.1%), bicyclogermacrene (11.6%), α-copaene (6.9%) and δ-cadinene (6.4%), whereas in G. malayanus oil bicyclogermacrene (43.9%), germacrene D (21.1%) and β-elemene (8.4%) were the most abundant components.
    Matched MeSH terms: Cyclohexanones/isolation & purification; Cyclohexanones/chemistry
  4. Ming-Tatt L, Khalivulla SI, Akhtar MN, Lajis N, Perimal EK, Akira A, et al.
    Pharmacol. Biochem. Behav., 2013 Dec;114-115:58-63.
    PMID: 24201054 DOI: 10.1016/j.pbb.2013.10.019
    The present study investigated the analgesic effect of a novel synthetic cyclohexanone derivative, 2,6-bis-4-(hydroxyl-3-methoxybenzilidine)-cyclohexanone or BHMC in a mouse model of chronic constriction injury-induced neuropathic pain. It was demonstrated that intraperitoneal administration of BHMC (0.03, 0.1, 0.3 and 1.0mg/kg) exhibited dose-dependent inhibition of chronic constriction injury-induced neuropathic pain in mice, when evaluated using Randall-Selitto mechanical analgesiometer. It was also demonstrated that pretreatment of naloxone (non-selective opioid receptor blocker), nor-binaltorphimine (nor-BNI, selective κ-opioid receptor blocker), but not β-funaltrexamine (β-FN, selective μ-opioid receptor blocker) and naltrindole hydrochloride (NTI, selective δ-opioid receptor blocker), reversed the anti-nociceptive effect of BHMC. In addition, the analgesic effect of BHMC was also reverted by pretreatment of 1H-[1,2,4]Oxadiazole[4,3-a]quinoxalin-1-one (ODQ, soluble guanosyl cyclase blocker) and glibenclamide (ATP-sensitive potassium channel blocker) but not Nω-nitro-l-arginine (l-NAME, a nitric oxide synthase blocker). Taken together, the present study demonstrated that the systemic administration of BHMC attenuated chronic constriction, injury-induced neuropathic pain. We also suggested that the possible mechanisms include κ-opioid receptor activation and nitric oxide-independent cyclic guanosine monophosphate activation of ATP-sensitive potassium channel opening.
    Matched MeSH terms: Cyclohexanones/therapeutic use*; Cyclohexanones/chemistry
  5. Leong SW, Abas F, Lam KW, Shaari K, Lajis NH
    Bioorg Med Chem, 2016 08 15;24(16):3742-51.
    PMID: 27328658 DOI: 10.1016/j.bmc.2016.06.016
    In the present study, a series of 2-benzoyl-6-benzylidenecyclohexanone analogs have been synthesized and evaluated for their anti-cholinesterase activity. Among the forty-one analogs, four compounds (38, 39, 40 and 41) have been identified as lead compounds due to their highest inhibition on both AChE and BChE activities. Compounds 39 and 40 in particular exhibited highest inhibition on both AChE and BChE with IC50 values of 1.6μM and 0.6μM, respectively. Further structure-activity relationship study suggested that presence of a long-chain heterocyclic in one of the rings played a critical role in the dual enzymes' inhibition. The Lineweaver-Burk plots and docking results suggest that both compounds could simultaneously bind to the PAS and CAS regions of the enzyme. ADMET analysis further confirmed the therapeutic potential of both compounds based upon their high BBB-penetrating. Thus, 2-benzoyl-6-benzylidenecyclohexanone containing long-chain heterocyclic amine analogs represent a new class of cholinesterase inhibitor, which deserve further investigation for their development into therapeutic agents for cognitive diseases such as Alzheimer.
    Matched MeSH terms: Cyclohexanones/pharmacology*; Cyclohexanones/chemistry
  6. Shakri NM, Salleh WMNHW, Khamis S, Mohamad Ali NA, Nadri MH
    Z Naturforsch C J Biosci, 2020 Nov 26;75(11-12):479-484.
    PMID: 32960782 DOI: 10.1515/znc-2020-0096
    The rich and diversified Malaysian flora represents an excellent resource of new chemical structures with biological activities. The genus Xylopia L. includes aromatic plants that have both nutritional and medicinal uses. This study aims to contribute with information about the volatile components of three Xylopia species essential oils: Xylopia frutescens, Xylopia ferruginea, and Xylopia magna. In this study, essential oils were extracted from the leaves by a hydrodistillation process. The identification of the essential oil components was performed by gas chromatography (GC-FID) and gas chromatography-coupled mass spectrometry (GC-MS). The major components of the essential oils from X. frutescens were bicyclogermacrene (22.8%), germacrene D (14.2%), elemol (12.8%), and guaiol (12.8%), whereas components of the essential oils from X. magna were germacrene D (35.9%), bicyclogermacrene (22.8%), and spathulenol (11.1%). The X. ferruginea oil was dominated by bicyclogermacrene (23.6%), elemol (13.7%), guaiol (13.4%), and germacrene D (12.3%).
    Matched MeSH terms: Cyclohexanones/isolation & purification; Cyclohexanones/chemistry
  7. Al-Majedy YK, Al-Amiery AA, Kadhum AA, Mohamad AB
    Biomed Res Int, 2016;2016:5891703.
    PMID: 27563671 DOI: 10.1155/2016/5891703
    The problem of bacteria resistance to many known agents has inspired scientists and researchers to discover novel efficient antibacterial drugs. Three rapid, clean, and highly efficient methods were developed for one-pot synthesis of 7-(aryl)-10,10-dimethyl-10,11-dihydrochromeno[4,3-b]chromene-6,8(7H,9H)-dione derivatives. Three components are condensed in the synthesis, 4-hydroxycoumarin, 5,5-dimethyl-1,3-cyclohexanedione, and aromatic aldehydes, using tetrabutylammonium bromide (TBAB), diammonium hydrogen phosphate (DAHP), or ferric chloride (FeCl3), respectively. Each method has different reaction mechanisms according to the catalyst. The present methods have advantages, including one-pot synthesis, excellent yields, short reaction times, and easy isolation of product. All catalysts utilized in our study could be reused several times without losing their catalytic efficiency. All synthesized compounds were fully characterized and evaluated for their antibacterial activity.
    Matched MeSH terms: Cyclohexanones/chemical synthesis*; Cyclohexanones/pharmacology
  8. Ming-Tatt L, Khalivulla SI, Akhtar MN, Mohamad AS, Perimal EK, Khalid MH, et al.
    Basic Clin Pharmacol Toxicol, 2012 Mar;110(3):275-82.
    PMID: 21967232 DOI: 10.1111/j.1742-7843.2011.00804.x
    This study investigated the potential antinociceptive efficacy of a novel synthetic curcuminoid analogue, 2,6-bis-(4-hydroxy-3-methoxybenzylidene)cyclohexanone (BHMC), using chemical- and thermal-induced nociception test models in mice. BHMC (0.03, 0.1, 0.3 and 1.0 mg/kg) administered via intraperitoneal route (i.p.) produced significant dose-related inhibition in the acetic acid-induced abdominal constriction test in mice with an ID(50) of 0.15 (0.13-0.18) mg/kg. It was also demonstrated that BHMC produced significant inhibition in both neurogenic (first phase) and inflammatory phases (second phase) of the formalin-induced paw licking test with an ID(50) of 0.35 (0.27-0.46) mg/kg and 0.07 (0.06-0.08) mg/kg, respectively. Similarly, BHMC also exerted significant increase in the response latency period in the hot-plate test. Moreover, the antinociceptive effect of the BHMC in the formalin-induced paw licking test and the hot-plate test was antagonized by pre-treatment with the non-selective opioid receptor antagonist, naloxone. Together, these results indicate that the compound acts both centrally and peripherally. In addition, administration of BHMC exhibited significant inhibition of the neurogenic nociception induced by intraplantar injections of glutamate and capsaicin with ID(50) of 0.66 (0.41-1.07) mg/kg and 0.42 (0.38-0.51) mg/kg, respectively. Finally, it was also shown that BHMC-induced antinociception was devoid of toxic effects and its antinociceptive effect was associated with neither muscle relaxant nor sedative action. In conclusion, BHMC at all doses investigated did not cause any toxic and sedative effects and produced pronounced central and peripheral antinociceptive activities. The central antinociceptive activity of BHMC was possibly mediated through activation of the opioid system as well as inhibition of the glutamatergic system and TRPV1 receptors, while the peripheral antinociceptive activity was perhaps mediated through inhibition of various inflammatory mediators.
    Matched MeSH terms: Cyclohexanones/administration & dosage; Cyclohexanones/pharmacology*; Cyclohexanones/toxicity
  9. Leong SW, Mohd Faudzi SM, Abas F, Mohd Aluwi MF, Rullah K, Lam KW, et al.
    Bioorg Med Chem Lett, 2015 Aug 15;25(16):3330-7.
    PMID: 26071636 DOI: 10.1016/j.bmcl.2015.05.056
    A series of twenty-four 2-benzoyl-6-benzylidenecyclohexanone analogs were synthesized and evaluated for their nitric oxide inhibition and antioxidant activity. Six compounds (3, 8, 10, 17, 18 and 19) were found to exhibit significant NO inhibitory activity in LPS/IFN-induced RAW 264.7 macrophages, of which compound 10 demonstrated the highest activity with the IC50 value of 4.2 ± 0.2 μM. Furthermore, two compounds (10 and 17) displayed antioxidant activity upon both the DPPH scavenging and FRAP analyses. However, none of the 2-benzoyl-6-benzylidenecyclohexanone analogs significantly scavenged NO radical. Structure-activity comparison suggested that 3,4-dihydroxylphenyl ring is crucial for bioactivities of the 2-benzoyl-6-benzylidenecyclohexanone analogs. The results from this study and the reports from previous studies indicated that compound 10 could be a candidate for further investigation on its potential as a new anti-inflammatory agent.
    Matched MeSH terms: Cyclohexanones/chemical synthesis; Cyclohexanones/pharmacology*; Cyclohexanones/chemistry
  10. Chung LY, Lo MW, Mustafa MR, Goh SH, Imiyabir Z
    Phytother Res, 2009 Mar;23(3):330-4.
    PMID: 18844258 DOI: 10.1002/ptr.2627
    A 96-well microplate filtration based 5-HT(2A) receptor-radioligand binding assay was optimized and adopted to carry out a bioassay-guided fractionation of the methanol extract of the leaves of Litsea sessilis. This purification led to the isolation of two compounds identified as (+)-boldine (1) and (+)-dehydrovomifoliol (2). (+)-Boldine binds to 5-HT(2A) receptors at high concentrations with a K(i) value of 2.16 microm. However, (+)-dehydrovomifoliol showed minimal competitive inhibition on the binding of [(3)H]ketanserin to the same receptor with a K(i) value of 2.06 mm. These results suggest that (+)-boldine influences the activity of 5-HT(2A) receptors through competitive binding as an agonist or antagonist.
    Matched MeSH terms: Cyclohexanones/pharmacology*
  11. Lee KH, Abas F, Alitheen NB, Shaari K, Lajis NH, Ahmad S
    Molecules, 2011 Nov 23;16(11):9728-38.
    PMID: 22113581 DOI: 10.3390/molecules16119728
    Our preliminary screening had shown that the curcumin derivative [2,6-bis(2,5-dimethoxybenzylidene)cyclohexanone] or BDMC33 exhibited improved anti-inflammatory activity by inhibiting nitric oxide synthesis in activated macrophage cells. In this study, we further investigated the anti-inflammatory properties of BDMC33 on PGE(2 )synthesis and cyclooxygenase (COX) expression in IFN-γ/LPS-stimulated macrophages. We found that BDMC33 significantly inhibited PGE(2) synthesis in a concentration-dependent manner albeit at a low inhibition level with an IC(50) value of 47.33 ± 1.00 µM. Interestingly, the PGE(2) inhibitory activity of BDMC33 is not attributed to inhibition of the COX enzyme activities, but rather BDMC33 selectively down-regulated the expression of COX-2. In addition, BDMC33 modulates the COX expression by sustaining the constitutively COX-1 expression in IFN-γ/LPS-treated macrophage cells. Collectively, the experimental data suggest an immunodulatory action of BDMC33 on PGE(2) synthesis and COX expression, making it a possible treatment for inflammatory disorders with minimal gastrointestinal-related side effects.
    Matched MeSH terms: Cyclohexanones/chemical synthesis; Cyclohexanones/pharmacology*
  12. Zha GF, Zhang CP, Qin HL, Jantan I, Sher M, Amjad MW, et al.
    Bioorg Med Chem, 2016 05 15;24(10):2352-9.
    PMID: 27083471 DOI: 10.1016/j.bmc.2016.04.015
    A series of new α,β-unsaturated carbonyl-based cyclohexanone derivatives was synthesized by simple condensation method and all compounds were characterized by using various spectroscopic techniques. New compounds were evaluated for their effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These compounds were also screened for in vitro cytotoxicity and for inhibitory activity for self-induced Aβ1-42 aggregation. The effect of these compounds against amyloid β-induced cytotoxicity was also investigated. The findings of in vitro experiment revealed that most of these compounds exhibited potent inhibitory activity against AChE and self-induced Aβ1-42 aggregation. The compound 3o exhibited best AChE (IC50=0.037μM) inhibitory potential. Furthermore, compound 3o disassembled the Aβ fibrils produced by self-induced Aβ aggregation by 76.6%. Compounds containing N-methyl-4-piperidone linker, showed high acetylcholinesterase and self-induced Aβ aggregation inhibitory activities as compared to reference drug donepezil. The pre-treatment of cells with synthetic compounds protected them against Aβ-induced cell death by up to 92%. Collectively, these findings suggest that some compounds from this series have potential to be promising multifunctional agents for AD treatment and our study suggest the cyclohexanone derivatives as promising new inhibitors for AChE and BuChE, potentially useful to treat neurodegenerative diseases.
    Matched MeSH terms: Cyclohexanones/pharmacology*; Cyclohexanones/chemistry*
  13. Razali NA, Nazarudin NA, Lai KS, Abas F, Ahmad S
    BMC Complement Altern Med, 2018 Jul 16;18(1):217.
    PMID: 30012134 DOI: 10.1186/s12906-018-2223-8
    BACKGROUND: Histamine is a well-known mediator involved in skin allergic responses through up-regulation of pro-inflammatory cytokines. Antihistamines remain the mainstay of allergy treatment, but they were found limited in efficacy and associated with several common side effects. Therefore, alternative therapeutic preferences are derived from natural products in an effort to provide safe yet reliable anti-inflammatory agents. Curcumin and their derivatives are among compounds of interest in natural product research due to numerous pharmacological benefits including anti-inflammatory activities. Here, we investigate the effects of chemically synthesized curcumin derivative, 2,6-bis(2-fluorobenzylidene)cyclohexanone (MS65), in reducing cytokine production in histamine-induced HaCaT cells.

    METHODS: Interleukin (IL)-6 cytokine production in histamine-induced HaCaT cells were measured using enzyme-linked immunosorbent assay (ELISA) and cytotoxicity effects were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Real-time polymerase chain reaction (RT-qPCR) was carried out to determine the inhibitory effects of MS65 on nuclear factor-kappa B (NF-κB) and mitogen activated protein kinase (MAPK) pathways.

    RESULTS: Histamine enhanced IL-6 production in HaCaT cells, with the highest production of IL-6 at 97.41 ± 2.33 pg/mL after 24 h of exposure. MS65 demonstrated a promising anti-inflammatory activity by inhibiting IL-6 production with half maximal inhibitory concentration (IC50) value of 4.91 ± 2.50 μM and median lethal concentration (LC50) value of 28.82 ± 7.56 μM. In gene expression level, we found that MS65 inhibits NF-κB and MAPK pathways through suppression of IKK/IκB/NFκB and c-Raf/MEK/ERK inflammatory cascades.

    CONCLUSION: Taken together, our results suggest that MS65 could be used as a lead compound on developing new medicinal agent for the treatment of allergic skin diseases.

    Matched MeSH terms: Cyclohexanones/pharmacology*; Cyclohexanones/chemistry
  14. Tham CL, Lam KW, Rajajendram R, Cheah YK, Sulaiman MR, Lajis NH, et al.
    Eur J Pharmacol, 2011 Feb 10;652(1-3):136-44.
    PMID: 21114991 DOI: 10.1016/j.ejphar.2010.10.092
    We previously showed that 2,6-bis-(4-hydroxyl-3-methoxybenzylidine)cyclohexanone (BHMC), suppressed the synthesis of various proinflammatory mediators. In this study we explain the mechanism of action of BHMC in lipopolysaccharide (LPS)-induced U937 monocytes and further show that BHMC prevents lethality of CLP-induced sepsis. BHMC showed dose-dependent inhibitory effects on p38, JNK and ERK 1/2 activity as determined by inhibition of phosphorylation of downstream transcription factors ATF-2, c-Jun and Elk-1 respectively. Inhibition of these transcription factors subsequently caused total abolishment of AP-1-DNA binding. BHMC inhibited p65 NF-κB nuclear translocation and DNA binding of p65 NF-κB only at the highest concentration used (12.5μM) but failed to alter phosphorylation of JNK, ERK1/2 and STAT-1. Since the inhibition of p38 activity was more pronounced we evaluated the possibility that BHMC may bind to p38. Molecular docking experiments confirmed that BHMC fits well in the highly conserved hydrophobic pocket of p38 MAP kinase. We also show that BHMC was able to improve survival from lethal sepsis in a murine caecal-ligation and puncture (CLP) model.
    Matched MeSH terms: Cyclohexanones/chemical synthesis; Cyclohexanones/pharmacology*; Cyclohexanones/chemistry
  15. Qin HL, Leng J, Zhang CP, Jantan I, Amjad MW, Sher M, et al.
    J Med Chem, 2016 Apr 14;59(7):3549-61.
    PMID: 27010345 DOI: 10.1021/acs.jmedchem.6b00276
    Sixty-nine novel α,β-unsaturated carbonyl based compounds, including cyclohexanone, tetralone, oxime, and oxime ether analogs, were synthesized. The antiproliferative activity determined by using seven different human cancer cell lines provided a structure-activity relationship. Compound 8ag exhibited high antiproliferative activity against Panc-1, PaCa-2, A-549, and PC-3 cell lines, with IC50 value of 0.02 μM, comparable to the positive control Erlotinib. The ten most active antiproliferative compounds were assessed for mechanistic effects on BRAF(V600E), EGFR TK kinases, and tubulin polymerization, and were investigated in vitro to reverse efflux-mediated resistance developed by cancer cells. Compound 8af exhibited the most potent BRAF(V600E) inhibitory activity with an IC50 value of 0.9 μM. Oxime analog 7o displayed the most potent EGFR TK inhibitory activity with an IC50 of 0.07 μM, which was analogous to the positive control. Some analogs including 7f, 8af, and 8ag showed a dual role as anticancer and MDR reversal agents.
    Matched MeSH terms: Cyclohexanones
  16. Adamu AA, Muhamad Sarih N, Gan SN
    R Soc Open Sci, 2021 Apr 14;8(4):201087.
    PMID: 33996112 DOI: 10.1098/rsos.201087
    Polyols of palm olein/polyethylene terephthalate (PET) were synthesized by means of incorporating recycled PET from waste drinking bottles in different proportions into palm olein alkyd in the presence of ethylene glycol. The polyols were characterized by FTIR, and theirs hydroxyl value (OHV), acid value (AV) and viscosity were determined. The formulation of the polyurethane coating was carried out by dissolving the polyol in mixed solvent of cyclohexanone/tetrahydrofuran (THF) (4 : 1) followed by reacting 1 hydroxyl equivalent of the polyol with 1.2 equivalents of methylene diphenyldiisocyanate and 0.05% dibutyltin dilaurate (DBTDL) catalyst. The coating cured through the cross-linking reactions between hydroxyl and isocyanate groups. The formation of urethane linkages was established by FTIR spectroscopy. The set films were characterized by thermal analysis. To study their anticorrosion properties, polarization measurements and EIS in 3.5% NaCl solution were determined. The coatings displayed good thermal stability and anticorrosion properties which were supported by XRD analysis. The PU7 coating, with the highest proportion of PET (up to 15% w/w), displayed significantly improved thermal stability and anticorrosion properties. It is evident that the performance of the polyurethane (PU) coatings could be enhanced by the incorporation of PET.
    Matched MeSH terms: Cyclohexanones
  17. Tham CL, Liew CY, Lam KW, Mohamad AS, Kim MK, Cheah YK, et al.
    Eur J Pharmacol, 2010 Feb 25;628(1-3):247-54.
    PMID: 19958764 DOI: 10.1016/j.ejphar.2009.11.053
    Curcumin is a highly pleiotropic molecule with significant regulatory effects upon inflammation and inflammatory related diseases. However curcumin has one major important limitation in which it has poor bioavailability. Design of synthetic structural derivatives of curcumin is but one approach that has been used to overcome its poor bioavailability while retaining, or further enhancing, its drug-like effects. We have synthesized a series of curcumin analogues and describe the effects of 2,6-bis-4-(hydroxyl-3-methoxy-benzylidine)-cyclohexanone or BHMC upon nitric oxide and cytokine synthesis in cellular models of inflammation. BHMC showed a significant dose-response inhibitory action upon the synthesis of NO and we have shown that this effect was due to suppression of both iNOS gene and enzyme expression without any effects upon scavenging of nitrite. We also demonstrated that BHMC has a very minimal effect upon iNOS activity with no effect at all upon the secretion of PGE(2) but has a strong inhibitory effect upon MCP-1 and IL-10 secretion and gene expression. Secretion and gene expression of TNF-alpha and IL-6 were moderately inhibited whereas IL-8 and IL-1beta were not altered. We conclude that BHMC selectively inhibits the synthesis of several inflammatory mediators. BHMC should be considered a promising drug lead for preclinical and further pharmacological studies.
    Matched MeSH terms: Cyclohexanones/chemical synthesis; Cyclohexanones/pharmacology*
  18. Lee KH, Abas F, Mohamed Alitheen NB, Shaari K, Lajis NH, Israf DA, et al.
    Int J Rheum Dis, 2015 Jul;18(6):616-27.
    PMID: 24832356 DOI: 10.1111/1756-185X.12341
    Synovial fibroblast has emerged as a potential cellular target in progressive joint destruction in rheumatoid arthritis development. In this study, BDMC33 (2,6-bis[2,5-dimethoxybenzylidene]cyclohexanone), a curcumin analogue with enhanced anti-inflammatory activity has been synthesized and the potency of BDMC33 on molecular and cellular basis of synovial fibroblasts (SF) were evaluated in vitro.
    Matched MeSH terms: Cyclohexanones/pharmacology*
  19. Yeap SK, Mohd Ali N, Akhtar MN, Razak NA, Chong ZX, Ho WY, et al.
    Molecules, 2021 Feb 26;26(5).
    PMID: 33652854 DOI: 10.3390/molecules26051277
    (2E,6E)-2,6-bis-(4-hydroxy-3-methoxybenzylidene)-cyclohexanone (BHMC) is a synthetic curcumin analogue, which has been reported to possess anti-tumor, anti-metastatic, and anti-invasion properties on estrogen receptor (ER) negative breast cancer cells in vitro and in vivo. However, the cytotoxic effects of BHMC on ER positive breast cancer cells were not widely reported. This study was aimed to investigate the cytotoxic potential of BHMC on MCF-7 cells using cell viability, cell cycle, and apoptotic assays. Besides, microarray and quantitative polymerase chain reaction (qPCR) were performed to identify the list of miRNAs and genes, which could be dysregulated following BHMC treatment. The current study discovered that BHMC exhibits selective cytotoxic effects on ER positive MCF-7 cells as compared to ER negative MDA-MB-231 cells and normal breast cells, MCF-10A. BHMC was shown to promote G2/M cell cycle arrest and apoptosis in MCF-7 cells. Microarray and qPCR analysis demonstrated that BHMC treatment would upregulate several miRNAs like miR-3195 and miR-30a-3p and downregulate miRNAs such as miR-6813-5p and miR-6132 in MCF-7 cells. Besides, BHMC administration was also found to downregulate few tumor-promoting genes like VEGF and SNAIL in MCF-7. In conclusion, BHMC induced apoptosis in the MCF-7 cells by altering the expressions of apoptotic-regulating miRNAs and associated genes.
    Matched MeSH terms: Cyclohexanones/pharmacology
  20. Harun SNA, Israf DA, Tham CL, Lam KW, Cheema MS, Md Hashim NF
    Molecules, 2018 Apr 10;23(4).
    PMID: 29642589 DOI: 10.3390/molecules23040865
    In order to metastasize, tumor cells need to migrate and invade the surrounding tissues. It is important to identify compound(s) capable of disrupting the metastasis of invasive cancer cells, especially for hindering invadopodia formation, so as to provide anti-metastasis targeted therapy. Invadopodia are thought to be specialized actin-rich protrusions formed by highly invasive cancer cells to degrade the extracellular matrix (ECM). A curcuminoid analogue known as 2,6-bis-(4-hydroxy-3-methoxybenzylidine)cyclohexanone or BHMC has shown good potential in inhibiting inflammation and hyperalgesia. It also possesses an anti-tumor effects on 4T1 murine breast cancer cells in vivo. However, there is still a lack of empirical evidence on how BHMC works in preventing human breast cancer invasion. In this study, we investigated the effect of BHMC on MDA-MB-231 breast cancer cells and its underlying mechanism of action to prevent breast cancer invasion, especially during the formation of invadopodia. All MDA-MB-231 cells, which were exposed to the non-cytotoxic concentrations of BHMC, expressed the proliferating cell nuclear antigen (PCNA), which indicate that the anti-proliferative effects of BHMC did not interfere in the subsequent experiments. By using a scratch migration assay, transwell migration and invasion assays, we determined that BHMC reduces the percentage of migration and invasion of MDA-MB-231 cells. The gelatin degradation assay showed that BHMC reduced the number of cells with invadopodia. Analysis of the proteins involved in the invasion showed that there is a significant reduction in the expressions of Rho guanine nucleotide exchange factor 7 (β-PIX), matrix metalloproteinase-9 (MMP-9), and membrane type 1 matrix metalloproteinase (MT1-MMP) in the presence of BHMC treatment at 12.5 µM. Therefore, it can be postulated that BHMC at 12.5 µM is the optimal concentration for preventing breast cancer invasion.
    Matched MeSH terms: Cyclohexanones/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links