Displaying publications 1 - 20 of 1096 in total

Abstract:
Sort:
  1. Sivanandam S, Fredericks HJ
    Med J Malaya, 1966 Jun;20(4):337-8.
    PMID: 4224563
    Matched MeSH terms: Filarioidea/cytology*
  2. Rohde K
    Med J Malaya, 1965 Sep;20(1):55.
    PMID: 4158840
    Matched MeSH terms: Pharynx/cytology*; Trematoda/cytology*
  3. Rohde K
    Med J Malaya, 1965 Sep;20(1):55-6.
    PMID: 4221416
    Matched MeSH terms: Helminths/cytology*
  4. Lee SH, Looi CY, Chong PP, Foo JB, Looi QH, Ng CX, et al.
    Curr Stem Cell Res Ther, 2021;16(5):551-562.
    PMID: 32988356 DOI: 10.2174/1574888X15666200928110923
    Mesenchymal Stem Cells (MSCs) are adult stem cells that are gaining worldwide attention for their multi-potential use in tissue engineering-based regenerative medicine. They can be obtained from numerous sources and one of the excellent sources is the dental tissue, such as Stem cells that are extracted from the Human Exfoliated Deciduous teeth (SHED). SHED are considered ideal due to their inherent characteristics, including the capability to proliferate quickly with minimal oncogenesis risk, multipotency capacity and their ability to suppress the immune system. On top of these positive cell traits, SHED are easily accessible with the patient's safety assured, posing less ethical issues and could also provide a sufficient number of cells for prospective clinical uses. This is primarily attributed to their ability to differentiate into multiple cell linages, including osteoblasts, odontoblasts, neuronal cells, adipocytes, as well as endothelial cells. Albeit SHED having a bright future, there still remains an obstacle to develop reliable experimental techniques to retain the long-term regeneration potential of the stem cells for prospective research and clinical applications. Therefore, this review aims to describe the various isolation, expansion and cryopreservation techniques used by researchers in this stem cell field. Optimization of these techniques is crucial to obtain distinct SHED culture with preserved stem cell properties, which enable more reproducible results that will be the key for further stem cell therapy development.
    Matched MeSH terms: Dental Pulp/cytology*; Stem Cells/cytology*
  5. Daud S, Nambiar P, Hossain MZ, Rahman MR, Bakri MM
    Gerodontology, 2016 Sep;33(3):315-21.
    PMID: 25266855 DOI: 10.1111/ger.12154
    OBJECTIVES: The aim of this study was to determine the changes in cell density and morphology of selected cells of the ageing human dental pulp.

    BACKGROUND: Changes in cell density and morphology of dental pulp cells over time may affect their capability to respond to tooth injury.

    MATERIALS AND METHODS: One hundred thirty-one extracted teeth were obtained from individuals between the ages of 6 and 80 years. The apical 1/3 of the root region was removed from all teeth prior to routine processing for producing histological slides. The histology slides were used to study the changes in cell density and morphology of selected pulp cells; odontoblasts, subodontoblasts and fibroblasts in the crown and root regions of the dental pulp. Student's t-test and one-way anova were used for statistical analyses.

    RESULTS: In all age groups, the cell density for all types of cells was found to be higher in the crown than in the root (p 

    Matched MeSH terms: Dental Pulp/cytology*; Tooth Root/cytology; Tooth Crown/cytology
  6. Tai L, Teoh HK, Cheong SK
    Malays J Pathol, 2018 Dec;40(3):325-329.
    PMID: 30580364
    INTRODUCTION: Induced pluripotent stem cells (iPSC) that exhibit embryonic stem cell-like properties with unlimited self-renewal and multilineage differentiation properties, are a potential cell source in regenerative medicine and cell-based therapy. Although retroviral and lentiviral transduction methods to generate iPSC are well established, the risk of mutagenesis limits the use of these products for therapeutic applications.

    MATERIALS AND METHODS: In this study, reprogramming of human dermal fibroblasts (NHDF) into iPSC was carried out using non-integrative Sendai virus for transduction. The iPSC clones were characterised based on the morphological changes, gene expression of pluripotency markers, and spontaneous and directed differentiation abilities into cells of different germ layers.

    RESULTS: On day 18-25 post-transduction, colonies with embryonic stem cell-like morphology were obtained. The iPSC generated were free of Sendai genome and transgene after passage 10, as confirmed by RT-PCR. NHDF-derived iPSC expressed multiple pluripotency markers in qRT-PCR and immunofluorescence staining. When cultured in suspension for 8 days, iPSC successfully formed embryoid body-like spheres. NHDF-derived iPSC also demonstrated the ability to undergo directed differentiation into ectoderm and endoderm.

    CONCLUSION: NHDF were successfully reprogrammed into iPSC using non-integrating Sendai virus for transduction.

    Matched MeSH terms: Fibroblasts/cytology*; Skin/cytology*; Induced Pluripotent Stem Cells/cytology*
  7. Mohd Nor NH, Berahim Z, Ahmad A, Kannan TP
    Curr Stem Cell Res Ther, 2017;12(1):52-60.
    PMID: 27538403
    Oral mucosa is a mucous membrane lining the oral cavity. Its main function is to protect the deeper structures against the external factors; thermal, chemical, mechanical and biological stimuli. Apart from that, it also plays a significant role during mastication, deglutition and speech. Some oral diseases or injuries to oral mucosa lead to impairment of the oral functions and aesthetics which eventually result in permanent defect of oral mucosa. In order to overcome this defect, different approaches for the development of reconstructed oral mucosa models have been employed including skin/autologous grafts, guided tissue replacement, vestibuloplasty etc. However, the finding of an acceptable source for the transplantations or autologous grafts seems a bit challenging. To overcome this problem, the development of oral mucosa using tissue engineering approach has been widely studied involving various cell lines from different sources. This paper aims to highlight various cell sources used in the development of tissueengineered oral mucosa models based on articles retrieved from PubMed and MEDLINE databases using the search terms "oral mucosa tissue engineering", regardless of time when published.
    Matched MeSH terms: Mouth Mucosa/cytology*; Stem Cells/cytology; Tooth/cytology
  8. Ching HS, Luddin N, Rahman IA, Ponnuraj KT
    Curr Stem Cell Res Ther, 2017;12(1):71-79.
    PMID: 27527527
    The odontogenic and osteogenic potential of dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous tooth (SHED) have been shown clearly by various in vitro and in vivo studies. The findings are promising and demonstrated that dental tissue engineering can give a new hope to the individuals suffering from tooth loss and dental diseases. The evaluation of odontogenic and osteogenic differentiation of DPSCs and SHED is commonly carried out by an illustration of the expression of varied related markers. In this review, few commonly used markers such as alkaline phosphatase (ALP), collagen type 1 (Col I), dentin matrix acid phosphoprotein 1 (DMP1), dentin sialophosphoprotein (DSPP), matrix extracellular phosphoglycoprotein (MEPE), osteocalcin (OCN), and osteopontin (OPN). DSPP, DMP1, and MEPE (odontogenic markers), which play an important role during early odontoblastic differentiation and late dentin mineralization, have been highlighted. Osteoblastic proliferation and early/late osteoblastic differentiation can be assessed by estimating the expression of Col I, ALP, OCN and OPN. Despite that, till date, there is no marker which could demonstrate for certain, the differentiation of human DPSCs and SHED towards the odontogenic and osteogenic lineage. This review suggests that SHED are noticeably different from DPSCs and exhibited higher capacity for osteogenic differentiation compared to DPSCs. On the other hand, different expression levels are shown by SHED and DPSCs with regards to the osteoblast markers for osteoblastic differentiation, where, SHED expressed higher levels of ALP, Col I and OCN compared to DPSCs.
    Matched MeSH terms: Dental Pulp/cytology*; Stem Cells/cytology*; Tooth, Deciduous/cytology*
  9. Ahmed Khan N, Baqir H, Siddiqui R
    Pathog Glob Health, 2015;109(7):305-6.
    PMID: 26878933 DOI: 10.1080/20477724.2015.1103504
    Matched MeSH terms: Amoeba/cytology*
  10. Landau I, Miltgen F, Le Bail O, Yap LF
    Ann Parasitol Hum Comp, 1976 May-Jun;51(3):303-7.
    PMID: 825011
    A new Haemoproteid of Malaysian Microchiroptera (Hepatochstis rodhaini n. sp.) is described; it is classified in the genus Hepatocystis because of the morphology of its gametocytes and tissue schizonts.
    Matched MeSH terms: Apicomplexa/cytology
  11. Higuchi A, Ling QD, Kumar SS, Munusamy MA, Alarfaj AA, Chang Y, et al.
    Lab Invest, 2015 Jan;95(1):26-42.
    PMID: 25365202 DOI: 10.1038/labinvest.2014.132
    Induced pluripotent stem cells (iPSCs) provide a platform to obtain patient-specific cells for use as a cell source in regenerative medicine. Although iPSCs do not have the ethical concerns of embryonic stem cells, iPSCs have not been widely used in clinical applications, as they are generated by gene transduction. Recently, iPSCs have been generated without the use of genetic material. For example, protein-induced PSCs and chemically induced PSCs have been generated by the use of small and large (protein) molecules. Several epigenetic characteristics are important for cell differentiation; therefore, several small-molecule inhibitors of epigenetic-modifying enzymes, such as DNA methyltransferases, histone deacetylases, histone methyltransferases, and histone demethylases, are potential candidates for the reprogramming of somatic cells into iPSCs. In this review, we discuss what types of small chemical or large (protein) molecules could be used to replace the viral transduction of genes and/or genetic reprogramming to obtain human iPSCs.
    Matched MeSH terms: Pluripotent Stem Cells/cytology*
  12. Ruszymah BH
    Med J Malaysia, 2008 Jul;63 Suppl A:27-8.
    PMID: 19024966
    Tissue engineering applies the principle of engineering and life sciences towards the development of biological substitute that restore, maintain or improve tissue or organ function. Scientists grow tissues or organs in vitro and implant them when the body is unable to prompt into healing itself. This presentation aims to highlight the potential clinical application of engineered tissues being researched on at the Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre.
    Matched MeSH terms: Bone and Bones/cytology*; Cartilage/cytology*; Cornea/cytology*; Skin/cytology*; Trachea/cytology*
  13. Mohd Nor NH, Berahim Z, Azlina A, Mokhtar KI, Kannan TP
    Curr Stem Cell Res Ther, 2017;12(8):675-681.
    PMID: 28969579 DOI: 10.2174/1574888X12666170929124621
    BACKGROUND: Fibroblasts are the common cells used in clinical regenerative medicine and dentistry. These cells are known to appear heterogeneous in vivo. Previous studies have only investigated the biological properties of these cell subpopulations in vitro. Despite sharing similarity in their spindle-shaped appearance, previous literatures revealed that they play distinguished functional and biological activities in the body.

    OBJECTIVE: This paper highlights the similarities and differences among these cell subpopulations, particularly between intraoral fibroblasts (human periodontal ligament, gingival and oral mucosa fibroblasts) and dermal fibroblasts based on several factors including their morphology, growth and proliferation rate.

    RESULTS: It could be suggested that each subpopulation of fibroblasts demonstrate different positionspecified gene signatures and responses towards extracellular signals. These dissimilarities are crucial to be taken into consideration to employ specific methodologies in stimulating these cells in vivo.

    CONCLUSION: A comparison of the characteristics of these cell subpopulations is desired for identifying appropriate cellular applications.

    Matched MeSH terms: Fibroblasts/cytology; Gingiva/cytology; Mouth Mucosa/cytology; Periodontal Ligament/cytology; Skin/cytology
  14. Ataollahi F, Pingguan-Murphy B, Moradi A, Wan Abas WA, Chua KH, Abu Osman NA
    Cytotherapy, 2014 Aug;16(8):1145-52.
    PMID: 24831838 DOI: 10.1016/j.jcyt.2014.01.010
    Numerous protocols for the isolation of bovine aortic endothelial cells have been described in the previous literature. However, these protocols prevent researchers from obtaining the pure population of endothelial cells. Thus, this study aimed to develop a new and economical method for the isolation of pure endothelial cells by introducing a new strategy to the enzymatic digestion method proposed by previous researchers.
    Matched MeSH terms: Aorta/cytology*; Endothelium, Vascular/cytology*; Fibroblasts/cytology; Endothelial Cells/cytology*
  15. Mok PL, Cheong SK, Leong CF
    Malays J Pathol, 2008 Jun;30(1):11-9.
    PMID: 19108406 MyJurnal
    Mesenchymal stem cells are pluripotent progenitors that could be found in human bone marrow. Mesenchymal stem cells are capable of renewing themselves without differentiation in long-term culture. These cells also have low immunogenicity and can suppress alloreactive T cell responses. In the current study, mesenchymal stem cells isolated and propagated previously from the bone marrow of a megaloblastic anaemia patient were tested for their capabilities to differentiate into adipocytes, chondrocytes and osteoblasts in vitro. The differentiated cells were determined by Oil Red O, Alcian Blue-PAS and Alizarin Red S staining, and reverse transcriptase-polymerase chain reaction to determine the expression of mRNA specific for adipogenesis, chondrogenesis and osteogenesis. The results showed that the fibroblast-like cells were capable of differentiating into adipocytes, chondrocytes and osteoblasts upon chemical induction. The adipocytes, chondrocytes and osteoblasts were stained positively to Oil Red O, Alcian Blue-PAS and Alizarin Red S respectively. The differentiated cells were also found to express mRNA specific for adipogenesis ('peroxisome proliferation-activated receptor gamma2' and lipoprotein lipase), chondrogenesis (collagen type II) and osteogenesis (osteocalcin, osteopontin and alkaline phosphatase). In conclusion, this research has successfully isolated fibroblast-like cells from human bone marrow and these cells demonstrated morphological, cytochemical and immunochemical characteristics similar to mesenchymal stem cells. These cells maintain their proliferative properties and could be differentiated into the mesoderm lineage. The success of this study is vital because mesenchymal stem cells can be used in cellular therapy to regenerate or replace damaged tissues, or as a vehicle for therapeutic gene delivery in the future.
    Matched MeSH terms: Osteoblasts/cytology*; Adipocytes/cytology*; Chondrocytes/cytology*; Mesenchymal Stromal Cells/cytology*
  16. Ibnubaidah MA, Chua KH, Mazita A, Azida ZN, Aminuddin BS, Ruszymah BH, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:115-6.
    PMID: 19025012
    A potential cure for hearing loss would be to regenerate hair cells by stimulating cells of the damaged inner ear sensory epithelia to proliferate and differentiate into hair cells. Here, we investigated the possibility to isolate, culture-expand and characterize the cells from the cochlea membrane of adult mice. Our results showed that the cultured cells isolated from mouse cochlea membrane were heterogenous in nature. Morphologically there were epithelial like cells, hair cell like, nerve cell like and fibroblastic cells observed in the culture. The cultured cells were immunopositive for specific hair cell markers including Myosin 7a, Calretinin and Espin.
    Matched MeSH terms: Cochlea/cytology*; Epithelial Cells/cytology*; Fibroblasts/cytology; Hair Cells, Auditory/cytology*
  17. Yazid AG, Anuar A, Onhmar HT, Ng AM, Ruszymah BH, Amaramalar SN
    Med J Malaysia, 2008 Jul;63 Suppl A:113-4.
    PMID: 19025011
    Spinal cord, sciatic nerve, olfactory ensheathing cell and bone marrow derived mesenchymal stem cells were evaluated as an alternative source for tissue engineering of nerve conduit. All cell sources were cultured in alpha-MEM medium. Olfactory Ensheathing Cell (OEC) showed the best result with higher growth kinetic compared to the others. Spinal cord and sciatic nerve were positive for GFAP, OEC were positive for GFAP, S100b and anti-cytokeratin 18 but negative for anti-Human Fibroblast.
    Matched MeSH terms: Olfactory Mucosa/cytology; Sciatic Nerve/cytology; Spinal Cord/cytology; Mesenchymal Stromal Cells/cytology
  18. Kojima K
    Med J Malaysia, 2004 May;59 Suppl B:32-3.
    PMID: 15468805
    Matched MeSH terms: Epithelial Cells/cytology; Fibroblasts/cytology; Nasal Septum/cytology; Chondrocytes/cytology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links