Displaying all 16 publications

Abstract:
Sort:
  1. Low CF, Mariana NS, Maha A, Chee HY, Fatimah MY
    J Fish Dis, 2015 Aug;38(8):761-4.
    PMID: 25073481 DOI: 10.1111/jfd.12283
    Matched MeSH terms: Fish Diseases/immunology
  2. Shariff M, Jayawardena PA, Yusoff FM, Subasinghe R
    Fish Shellfish Immunol, 2001 May;11(4):281-91.
    PMID: 11417716
    This study was to determine the median lethal concentration (LC50) of copper to Javenese carp, Puntius gonionotus (Bleeker), and the immune response after the fish were exposed to sublethal levels of copper and challenged with formalin killed Aeromonas hydrophila. The LC50 of copper on P. gonionotus at 24, 48, 72, 96 and 120 h were estimated as 2.17, 0.91, 0.57, 0.53 and 0.42 mg l(-1), respectively. To determine the effect of copper on the immune system, fish were exposed for 66 days to 0.05, 0.10 and 0.15 mg Cu l(-1). After 56 days of initial exposure to copper, fish were challenged with 0.1 ml of 4.5 x 10(5) cfu ml(-1) formalin killed A. hydrophila and maintained in the same concentration of copper. After the challenge, the immune response was monitored for 2 weeks using haematological and serological assays. During the initial phase of exposure to copper, significant changes were noted in the white blood cell, lysozyme, potential killing activity, total plasma protein, total immunoglobulin and haematocrit levels between the control and treated fish. One week after challenge with A. hydrophila, there was a significant increase in the values of white blood cells, total protein and total immunoglobulin compared to the values before the challenge. However, these values were not significantly different (P>0.05) between the control and the treated fish. In contrast, NBT and lysozyme assays exhibited a significant difference (P<0.05) in fish exposed to 0.10 mg Cu l(-1) (0.525 +/- 0.17; 24.42 +/- 3.35 x 10(2) micromg ml(-1)) and 0.15 mg Cu 1(-1) (0.536 +/- 0.19; 21.78 +/- 1.29 x 10(2) micromg ml(-1)) compared to the control (0.746 +/- 0.31; 30.73 +/- 5.42 x 10(2) micromg ml(-1)) after the bacterial challenge (day 61). There was however no significant difference (P>0.05) in NBT and lysozyme levels in fish exposed to lower level of copper (0.05 mg Cu l(-1)), suggesting the absence of immunosuppressive effects at lower level of exposure.
    Matched MeSH terms: Fish Diseases/immunology*
  3. Wang R, Hu X, Lü A, Liu R, Sun J, Sung YY, et al.
    Fish Shellfish Immunol, 2019 Nov;94:510-516.
    PMID: 31541778 DOI: 10.1016/j.fsi.2019.09.039
    Skin plays an important role in the innate immune responses of fish, particularly towards bacterial infection. To understand the molecular mechanism of mucosal immunity of fish during bacterial challenge, a de novo transcriptome assembly of crucian carp Carassius auratus skin upon Aeromonas hydrophila infection was performed, the latter with Illumina Hiseq 2000 platform. A total of 118111 unigenes were generated and of these, 9693 and 8580 genes were differentially expressed at 6 and 12 h post-infection, respectively. The validity of the transcriptome results of eleven representative genes was verified by quantitative real-time PCR (qRT-PCR) analysis. A comparison with the transcriptome profiling of zebrafish skin to A. hydrophila with regards to the mucosal immune responses revealed similarities in the complement system, chemokines, heat shock proteins and the acute-phase response. GO and KEGG enrichment pathway analyses displayed the significant immune responses included TLR, MAPK, JAK-STAT, phagosome and three infection-related pathways (ie., Salmonella, Vibrio cholerae and pathogenic Escherichia coli) in skin. To our knowledge, this study is the first to describe the transcriptome analysis of C. auratus skin during A. hydrophila infection. The outcome of this study contributed to the understanding of the mucosal defense mechanisms in cyprinid species.
    Matched MeSH terms: Fish Diseases/immunology*
  4. Liu R, Hu X, Lü A, Song Y, Lian Z, Sun J, et al.
    Zebrafish, 2020 04;17(2):91-103.
    PMID: 32176570 DOI: 10.1089/zeb.2019.1843
    Spring viremia of carp virus (SVCV) causes the skin hemorrhagic disease in cyprinid species, but its molecular mechanism of skin immune response remains unclear at the protein level. In the present study, the differential proteomics of the zebrafish (Danio rerio) skin in response to SVCV infection were examined by isobaric tags for relative and absolute quantitation and quantitative polymerase chain reaction (qPCR) assays. A total of 3999 proteins were identified, of which 320 and 181 proteins were differentially expressed at 24 and 96 h postinfection, respectively. The expression levels of 16 selected immune-related differentially expressed proteins (DEPs) were confirmed by qPCR analysis. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that DEPs were significantly associated with complement, inflammation, and antiviral response. The protein-protein interaction network of cytoskeleton-associated proteins, ATPase-related proteins, and parvalbumins from DEPs was shown to be involved in skin immune response. This is first report on the skin proteome profiling of zebrafish against SVCV infection, which will contribute to understand the molecular mechanism of local mucosal immunity in fish.
    Matched MeSH terms: Fish Diseases/immunology*
  5. Lee S, Katya K, Hamidoghli A, Hong J, Kim DJ, Bai SC
    Fish Shellfish Immunol, 2018 Dec;83:283-291.
    PMID: 30217508 DOI: 10.1016/j.fsi.2018.09.031
    This study evaluated the synergistic effects of dietary Bacillus subtilis WB60 and mannanoligosaccharide (MOS) in juvenile Japanese eel, Anguilla japonica. Seven treatment diets were formulated to contain three different levels of B. subtilis (0.0, 0.5, and 1.0 × 107 CFU/g diet denoted as BS0, BS0.5, and BS1, respectively) with two MOS levels (0 and 5 g/kg diet denoted as M0 and M5, respectively), and one diet with oxytetracycline (OTC) at 5 g/kg diet. Each diet (BS0M0 (CON), BS0M5, BS0.5M0, BS0.5M5, BS1M0, BS1M5, and OTC) was fed to triplicate groups of 20 fish averaging 9.00 ± 0.11 g (mean ± SD) for eight weeks. Average weight gain, feed efficiency, specific growth rate and protein efficiency ratio of fish fed the BS0.5M5 and BS1M5 diets were significantly higher than those of fish fed CON, BS0.5M0 and OTC diets (P fish fed the BS0.5M5, BS1M5, and OTC diets compared to the CON, BS0.5M0, and BS0M5 diets (P fish fed the BS0.5M5 and BS1M5 diets compared to those of fish fed the other diets (P fish fed BS0.5M5 and BS1M5 diets were significantly higher than those of fish fed the CON diet (P fish fed BS0.5M5 and BS1M5 diets than those fed CON, BS0M5, and OTC diets. Additionally, resistance to bacterial challenge with Vibrio anguillarum was recorded significantly lower for fish fed the CON diet than those fed other diets (P > 0.05). Therefore, the results for growth performance, non-specific immune responses, intestinal morphology, and disease resistance demonstrated that supplementation of B. subtilis at 0.5 × 107 CFU/g diet and mannanoligosaccharide at 5 g/kg diet could have beneficial synergistic effects in Japanese eel. The isolated probiotic from eel and the selected prebiotic could lead to the development of a specific and potential synbiotic in Japanese eel aquaculture.
    Matched MeSH terms: Fish Diseases/immunology
  6. Laith AA, Mazlan AG, Effendy AW, Ambak MA, Nurhafizah WWI, Alia AS, et al.
    Res Vet Sci, 2017 Jun;112:192-200.
    PMID: 28499213 DOI: 10.1016/j.rvsc.2017.04.020
    The current study was designed to evaluate the effects of Excoecaria agallocha leaf extracts on immune mechanisms and resistance of tilapia, Oreochromis niloticus, after challenge with Streptococcus agalactiae. Fish were divided into 6 groups; groups 1-5 fed with E. agallocha leaf extracts at 10, 20, 30, 40 and 50mgkg(-1) level, respectively. Group 6 were fed without extract addition and acted as control. E. agallocha extracts were administered as feed supplement in fish diet for 28days and the hematological, immunological, and growth performance studies were conducted. Fish were infected with S. agalactiae at a dose of 15×105CFUmL(-1) and the total white blood cell (WBC), phagocytosis and respiratory burst activities of leukocytes, serum bactericidal activity, lysozyme, total protein, albumin, and globulin levels were monitored and mortalities recorded for 15days post infection. Results revealed that feeding O. niloticus with 50mgkg(-1) of E. agallocha enhanced WBC, phagocytic, respiratory burst, serum bactericidal and lysozyme activities on day 28 pre-challenge and on 3rd, 6th, 9th, 12th and 15th day post-challenge as compared to control. Total protein and albumin were not enhanced by E. agallocha diet. E. agallocha increased the survival of fish after challenge with S. agalactiae. The highest mortality rate (97%) was observed in control fish and the lowest mortality (27%) was observed with group fed with 50mgkg(-1) extract. The results indicate that dietary intake of E. agallocha methanolic leaf extract in O. niloticus enhances the non-specific immunity and disease resistance against S. agalactiae pathogen.
    Matched MeSH terms: Fish Diseases/immunology
  7. Munir MB, Hashim R, Nor SAM, Marsh TL
    Fish Shellfish Immunol, 2018 Apr;75:99-108.
    PMID: 29407616 DOI: 10.1016/j.fsi.2018.02.005
    This study examined the effect of dietary prebiotics and probiotics after 16 weeks, followed by 8 weeks of post feeding trial with the control unsupplemented diet on haematological and immune response against Aeromonas hydrophila infection in Channa striata fingerlings. Fish were raised on a 40% protein and 12% lipid feed containing three commercial prebiotics (β-glucan, GOS or galacto-oligosaccharide, MOS or mannan-oligosaccharide); and two probiotics- (Saccharomyces cerevisiae, Lactobacillus acidophilus), respectively and a control. Throughout the study, supplementation with dietary prebiotics and probiotics led to significant (P fish were challenged with Aeromonas hydrophila at the dose of 2 × 106. The disease resistance against A. hydrophila was higher significantly (P fish fed with probiotic feed supplements (L.acidophilus was highest) compared to prebiotics and control. The study is the first to report the absence of differences in sustaining the efficacies attained after intake of β-glucan, GOS and MOS upon post-feeding with an unsupplemented feed, over a prolonged period.
    Matched MeSH terms: Fish Diseases/immunology*
  8. Low CF, Shamsudin MN, Chee HY, Aliyu-Paiko M, Idrus ES
    J Fish Dis, 2014 Aug;37(8):693-701.
    PMID: 24304156 DOI: 10.1111/jfd.12153
    The gram-negative bacterium, Vibrio alginolyticus, has frequently been identified as the pathogen responsible for the infectious disease called vibriosis. This disease is one of the major challenges facing brown-marbled grouper aquaculture, causing fish farmers globally to suffer substantial economic losses. The objective of this study was to investigate the proteins involved in the immune response of brown-marbled grouper fingerlings during their initial encounter with pathogenic organisms. To achieve this objective, a challenge experiment was performed, in which healthy brown-marbled grouper fingerlings were divided into two groups. Fish in the treated group were subjected to intraperitoneal injection with an infectious dose of V. alginolyticus suspended in phosphate-buffered saline (PBS), and those in the control group were injected with an equal volume of PBS. Blood samples were collected from a replicate number of fish from both groups at 4 h post-challenge and analysed for immune response-related serum proteins via two-dimensional gel electrophoresis. The results showed that 14 protein spots were altered between the treated and control groups; these protein spots were further analysed to determine the identity of each protein via MALDI-TOF/TOF. Among the altered proteins, three were clearly overexpressed in the treated group compared with the control; these were identified as putative apolipoprotein A-I, natural killer cell enhancement factor and lysozyme g. Based on these results, these three highly expressed proteins participate in immune response-related reactions during the initial exposure (4 h) of brown-marbled grouper fingerling to V. alginolyticus infection.
    Matched MeSH terms: Fish Diseases/immunology*
  9. Laith AA, Abdullah MA, Nurhafizah WWI, Hussein HA, Aya J, Effendy AWM, et al.
    Fish Shellfish Immunol, 2019 Jul;90:235-243.
    PMID: 31009810 DOI: 10.1016/j.fsi.2019.04.052
    Streptococcus agalactiae species have been recognized as the main pathogen causing high mortality in fish leading to significant worldwide economical losses to the aquaculture industries. Vaccine development has become a priority in combating multidrug resistance in bacteria; however, there is a lack of commercial live attenuated vaccine (LAV) against S. agalactiae in Malaysia. The aim of this study is to compare two methods using attenuated bacteria as live vaccine and to evaluate the efficacy of selected LAV on the immune responses and resistance of Oreochromis niloticus (tilapia) against S. agalactiae. The LAV derived from S. agalactiae had been weakened using the chemical agent Acriflavine dye (LAV1), whereas the second vaccine was weakened using serial passages of bacteria on broth media (LAV2). Initial immunization was carried out only on day one, given twice-in the morning and evening, for the 42 day period. Serum samples were collected to determine the systemic antibody (IgM) responses and lysozymal (LSZ) activity using ELISA. On day 43 after immunization, the fish were injected intraperitoneally (i.p) with 0.1 mL of S. agalactiae at LD50 = 1.5 × 105 (CFU)/fish. Fish were monitored daily for 10 days. Clinical signs, mortality and the relative percent of survival (RPS) were recorded. Trial 1 results showed a significant increased (P fish). The efficacy of LAV1 was proven effective as determined by the RPS values, LAV1 at 81.58% as compared to LAV2 at 65.79%. Trial 2 of LAV1 and control group were further determined by administering primary and booster doses revealed a RPS value for LAV1 of 82.05%, with the significant enhancement on the immune responses of tilapia as compared to control group. In conclusion, LAV revealed to elevate antibody IgM levels, LSZ activity and provide long-term protection when added to feed. LAV is a low-cost vaccine shown to rapidly increase the immune response of fish and increase survival rates of fish against S. agalactiae infection.
    Matched MeSH terms: Fish Diseases/immunology*
  10. Sood N, Verma DK, Paria A, Yadav SC, Yadav MK, Bedekar MK, et al.
    Fish Shellfish Immunol, 2021 Apr;111:208-219.
    PMID: 33577877 DOI: 10.1016/j.fsi.2021.02.005
    Nile tilapia (Oreochromis niloticus) is one of the most important aquaculture species farmed worldwide. However, the recent emergence of tilapia lake virus (TiLV) disease, also known as syncytial hepatitis of tilapia, has threatened the global tilapia industry. To gain more insight regarding the host response against the disease, the transcriptional profiles of liver in experimentally-infected and control tilapia were compared. Analysis of RNA-Seq data identified 4640 differentially expressed genes (DEGs), which were involved among others in antigen processing and presentation, MAPK, apoptosis, necroptosis, chemokine signaling, interferon, NF-kB, acute phase response and JAK-STAT pathways. Enhanced expression of most of the DEGs in the above pathways suggests an attempt by tilapia to resist TiLV infection. However, upregulation of some of the key genes such as BCL2L1 in apoptosis pathway; NFKBIA in NF-kB pathway; TRFC in acute phase response; and SOCS, EPOR, PI3K and AKT in JAK-STAT pathway and downregulation of the genes, namely MAP3K7 in MAPK pathway; IFIT1 in interferon; and TRIM25 in NF-kB pathway suggested that TiLV was able to subvert the host immune response to successfully establish the infection. The study offers novel insights into the cellular functions that are affected following TiLV infection and will serve as a valuable genomic resource towards our understanding of susceptibility of tilapia to TiLV infection.
    Matched MeSH terms: Fish Diseases/immunology*
  11. Lee S, Katya K, Park Y, Won S, Seong M, Hamidoghli A, et al.
    Fish Shellfish Immunol, 2017 Feb;61:201-210.
    PMID: 28034835 DOI: 10.1016/j.fsi.2016.12.035
    The current experiment was conducted to evaluate and compare the efficacy of two different probiotics Bacillus subtilis WB60 and Lactobacillus plantarum KCTC3928 in diet of Japanese eel, Anguilla japonica. Seven experimental diets were formulated to contain no probiotics (CON), three graded levels of B. subtilis at 106 (BS1), 107 (BS2), 108 (BS3) and L. plantarum at 106 (LP1), 107 (LP2), 108 (LP3) CFU/g diet. Twenty fish averaging 8.29 ± 0.06 g were distributed in to 21 aquaria and were randomly assigned to one of the experimental diets in triplicate groups. Average weight gain (WG), feed efficiency (FE), and protein efficiency ratio (PER) of fish fed B. subtilis at 107 (BS2) and 108 (BS3) CFU/g diet were significantly higher than those of fish fed other experimental diets (P fish fed B. subtilis at 107 (BS2) and 108 (BS3) CFU/g diet were detected to be significantly higher than that from fish fed CON diet (P fish fed B. subtilis at 107 and 108 CFU/g diet were recorded to be significantly higher than those of fish fed other experimental diets (P fish fed108 (BS3) CFU/g diet as compared to other treatment groups. Whereas, results from the disease challenge test with bacteria Vibrio angulillarum showed significantly lower survival rate for fish fed CON diet than those of fish fed other experimental diets. Therefore, these results indicated that oral supplement of B. subtilis at 108 (BS3) CFU/g diet could be a more effective source of probiotic compared to L. plantarum in Japanese eel.
    Matched MeSH terms: Fish Diseases/immunology*
  12. Yaacob EN, De Geest BG, Goethals J, Bajek A, Dierckens K, Bossier P, et al.
    Vet Immunol Immunopathol, 2018 Oct;204:19-27.
    PMID: 30596377 DOI: 10.1016/j.vetimm.2018.09.001
    Vibrio anguillarum causes high mortality in European sea bass (Dicentrarchus labrax) larviculture. In this study, we evaluated if the recombinant sea bass ferritin-H could stimulate the innate immune system of gnotobiotic European sea bass larvae resulting in protection against a V. anguillarum challenge. We also evaluated the effect of a V. anguillarum infection on the transcription of immune-related genes in gnotobiotic European sea bass larvae. Recombinant sea bass ferritin-H was produced, encapsulated in calcium alginate microparticles and orally delivered to sea bass larvae at seven days after hatching. Our results showed V. anguillarum caused an acute infection, resulting in high mortality. The infection significantly upregulated the expression of tlr3, tlr5, cas1, il1β, tnfα, mif, il10, cc1, cxcl8 at 18, 24 and 36 h post infection, but not of the chemokine receptor genes cxcr4 and ccr9. There was no protective effect of ferritin-H. Remarkably, ferritin-H caused significantly higher transcript levels for cxcr4 and ccr9. Sea bass ferritin-H was more likely involved in immune-suppression and results point in the direction of a negative regulation of CXCR4 resulting in inhibition of cell proliferation, differentiation and migration which is detrimental to innate immunity and might explain the non-protective effect of ferritin-H in fish larvae.
    Matched MeSH terms: Fish Diseases/immunology
  13. Arasu A, Kumaresan V, Sathyamoorthi A, Chaurasia MK, Bhatt P, Gnanam AJ, et al.
    Microbiol Res, 2014 Nov;169(11):824-34.
    PMID: 24780642 DOI: 10.1016/j.micres.2014.03.005
    In this study, we reported a molecular characterization of a novel proto-type galectin-1 from the striped murrel Channa striatus (named as CsGal-1). The full length CsGal-1 was identified from an established striped murrel cDNA library and further we confirmed the sequence by cloning. The complete cDNA sequence of CsGal-1 is 590 base pairs (bp) in length and its coding region encoded a poly peptide of 135 amino acids. The polypeptide contains a galactoside binding lectin domain at 4-135. The domain carries a sugar binding site at 45-74 along with its signatures (H(45)-X-Asn(47)-X-Arg(49) and Trp(69)-X-X-Glu(72)-X-Arg(74)). CsGal-1 shares a highly conserved carbohydrate recognition domain (CRD) with galectin-1 from other proto-type galectin of teleosts. The mRNA expressions of CsGal-1 in healthy and various immune stimulants including Aphanomyces invadans, Aeromonas hydrophila, Escherchia coli lipopolysaccharide and poly I:C injected tissues of C. striatus were examined using qRT-PCR. CsGal-1 mRNA is highly expressed in kidney and is up-regulated with different immune stimulants at various time points. To understand its biological activity, the coding region of CsGal-1 gene was expressed in an E. coli BL21 (DE3) cloning system and its recombinant protein was purified. The recombinant CsGal-1 protein was agglutinated with mouse erythrocytes at a concentration of 4μg/mL in a calcium independent manner. CsGal-1 activity was inhibited by d-galactose at 25mM(-1) and d-glucose and d-fructose at 100mM(-1). The results of microbial binding assay showed that the recombinant CsGal-1 protein agglutinated only with the Gram-negative bacteria. Interestingly, we observed no agglutination against Gram-positive bacteria. Overall, the study showed that CsGal-1 is an important immune gene involved in the recognition and elimination of pathogens in C. striatus.
    Matched MeSH terms: Fish Diseases/immunology*
  14. Khoo CK, Abdul-Murad AM, Kua BC, Mohd-Adnan A
    Fish Shellfish Immunol, 2012 Oct;33(4):788-94.
    PMID: 22842150 DOI: 10.1016/j.fsi.2012.07.005
    Cryptocaryoniasis (also known as marine white spot disease) is mediated by Cryptocaryon irritans. This obligate ectoparasitic protozoan infects virtually all marine teleosts, which includes Lates calcarifer, a highly valuable aquaculture species. Little is known about L. calcarifer-C. irritans interactions. This study was undertaken to gain an informative snapshot of the L. calcarifer transcriptomic response over the course of C. irritans infection. An in-house fabricated cDNA microarray slides containing 3872 probes from L. calcarifer liver and spleen cDNA libraries were used as a tool to investigate the response of L. calcarifer to C. irritans infection. Juvenile fish were infected with parasites for four days, and total RNA was extracted from liver tissue, which was harvested daily. We compared the transcriptomes of C. irritans-infected liver to uninfected liver over an infection period of four days; the comparison was used to identify the genes with altered expression levels in response to C. irritans infection. The greatest number of infection-modulated genes was recorded at 2 and 3 days post-infection. These genes were mainly associated with the immune response and were associated in particular with the acute phase response. Acute phase proteins such as hepcidin, C-type lectin and serum amyloid A are among the highly modulated genes. Our results indicate that an induced acute phase response in L. calcarifer toward C. irritans infection is similar to the responses observed in bacterial infections of teleosts. This response demonstrates the importance of first line defenses in teleost innate immune responses against ectoparasite infection.
    Matched MeSH terms: Fish Diseases/immunology*
  15. Aznan AS, Lee KL, Low CF, Iberahim NA, Wan Ibrahim WN, Musa N, et al.
    Fish Shellfish Immunol, 2018 Jul;78:338-345.
    PMID: 29684603 DOI: 10.1016/j.fsi.2018.04.033
    Outbreaks of edwardsiellosis have severe impact on the aquaculture production of African catfish Clarias gariepinus. In this study, feed supplemented with apple mangrove Sonneratia caseolaris extract was evaluated for its protective effect against Edwardsiella tarda infection in African catfish. Results showed an increase in growth performance and higher survival rate in the treatment groups in a dose dependent manner. Haematological analyses showed an increase in white blood cell count in the treatment groups. Histopathological analysis revealed degenerative changes and regeneration of liver tissue architecture in both the control and treatment groups. However, the presence of inflammatory cells was found exclusively in the kidney of T3 treatment group that was supplemented with the highest dose of extract at 3.17 mg/ml, which inferred the activation of immune response in the fish. Contrast to the deteriorative alteration observed in the kidney of the control group due to E. tarda infection, treatment group exhibited tissue regeneration and well-defined kidney tissue architecture at 3 dpi. Taken together, these results demonstrated that supplementation with the methanol extract of S. caseolaris possesses protective effect in African catfish against the infection of E. tarda.
    Matched MeSH terms: Fish Diseases/immunology*
  16. Mohd-Shaharuddin N, Mohd-Adnan A, Kua BC, Nathan S
    Fish Shellfish Immunol, 2013 Mar;34(3):762-9.
    PMID: 23296118 DOI: 10.1016/j.fsi.2012.11.052
    Cryptocaryon irritans causes Cyptocaryonosis or white spot disease in a wide range of marine fish including Lates calcarifer (Asian seabass). However, the immune response of this fish to the parasite is still poorly understood. In this study, quantitative polymerase chain reaction (qPCR) was performed to assess the expression profile of immune-related genes in L. calcarifer infected by C. irritans. A total of 21 immune-related genes encoding various functions in the fish immune system were utilized for the qPCR analysis. The experiment was initiated with the infection of juvenile fish by exposure to theronts from 200 C. irritans cysts, and non-infected juvenile fish were used as controls. Spleen, liver, gills and kidney tissues were harvested at three days post-infection from control and infected fish. In addition, organs were also harvested on day-10 post-infection from fish that had been allowed to recover from day-4 up to day-10 post-infection. L. calcarifer exhibited pathological changes on day-3 post-infection with the characteristic presence of white spots on the entire fish body, excessive mucus production and formation of a flap over the fish eye. High quality total RNA was extracted from all tissues and qPCR was performed. The qPCR analysis on the cohort of 21 immune-related genes of the various organs harvested on day-3 post-infection demonstrated that most genes were induced significantly (p fish that were allowed to recover from the C. irritans infection (10 days post-infection), expression of the immune-related genes was down-regulated to levels similar to the control fish. These results provide insights into the interaction between C. irritans and L. calcarifer and suggest that the innate immune system plays an important role in early defence against parasite infection allowing the fish to eventually recover from the infection.
    Matched MeSH terms: Fish Diseases/immunology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links