OBJECTIVE: To compare the metabolite profile of Chrysanthemum morifolium flower fraction with that of its detannified fraction in relation to XO inhibitory activity using a rapid and effective metabolomics approach.
METHODS: Proton nuclear magnetic resonance (1 H-NMR)-based metabolomics approach coupled with multivariate data analysis was utilised to characterise the XO inhibitors related to the antioxidant properties, total phenolic, and total flavonoid contents of the C. morifolium dried flowers.
RESULTS: The highest XO inhibitory activity, 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity, total phenolic and flavonoid content with strong positive correlation between them were observed in the ethyl acetate (EtOAc) fraction. Detannified EtOAc showed higher XO inhibitory activity than non-detannified EtOAc fraction. A total of 17 metabolites were tentatively identified, of which three namely kaempferol, 4-hydroxybenzoic acid and apigenin, could be suggested to be responsible for the strong XO inhibitory activity. Additive interaction between 4-hydroxybenzoic acid and apigenin (or kaempferol) in XO inhibition was demonstrated in the interaction assay conducted.
CONCLUSION: Chrysanthemum morifolium dried flower-part could be further explored as a natural XO inhibitor for its anti-hyperuricemic potential. Metabolomics approach served as an effective classification of plant metabolites responsible for XO inhibitory activity, and demonstrated that multiple active compounds can work additively in giving combined inhibitory effects.
METHODS: A large dataset was gathered, including four 2-year series of monthly sowings of 28 sorghum varieties in Mali and two 1-year series of monthly sowings of eight rice varieties in the Philippines to compare with previously published monthly sowings in Japan and Malaysia, and data from sorghum breeders in France, Nicaragua and Colombia. An additive linear model of the duration in days to panicle initiation (PI) and flowering time using daylength and daily changes in sunrise and sunset times was implemented.
KEY RESULTS: Simultaneous with the phyllochron, the duration to PI of field crops acclimated to the mean temperature at seedling emergence within the usual range of mean cropping temperatures. A unique additive linear model combining daylength and daily changes in sunrise and sunset hours was accurately fitted for any type of response in the duration to PI to the sowing date without any temperature input. Once calibrated on a complete and an incomplete monthly sowing series at two tropical latitudes, the model accurately predicted the duration to PI of the concerned varieties from the equatorial to the temperate zone.
CONCLUSIONS: Including the daily changes in sunrise and sunset times in the updated photoperiodism model largely improved its accuracy at the latitude of each experiment. More research is needed to ascertain its multi-latitudinal accuracy, especially at latitudes close to the equator.