Displaying all 13 publications

Abstract:
Sort:
  1. Yim HS, Chye FY, Heng PY, Ho CW
    Int J Med Mushrooms, 2011;13(4):357-68.
    PMID: 22164766
    The oxidative stability of sunflower oil supplemented with medicinal split gill mushroom, Schizophyllum commune's crude extract (CE), the formic acid (FA) fraction and semipurified subfractions (SF) II and IV were tested, compared to BHA and alpha-tocopherol, by measuring their peroxide value, iodine value, p-anisidine value, thiobarbituric acid-reactive substances, and free fatty acid content. Their total phenolic content (TPC), 2,2-diphenyl-1-picryhydrazyl (DPPH) radical scavenging, and ferric reducing/antioxidant power (FRAP) were also evaluated. FA and CE exhibited highest DPPH* scavenging, while FA and SFIV showed the highest FRAP; TPC was found to be highest in CE, FA, and SFIV. BHA and alpha-tocopherol are more protective in stabilizing the sunflower oil; SFII and SFIV had short-term protective effect in secondary oxidation for 1 year, while CE and FA retarded secondary oxidation and extended the shelf life 1 1/2 years and 2 years, respectively. HPLC-DAD analysis found (+)-catechin in Sch. commune's extracts. Sch. commune's extracts did not show similar retardation of lipid oxidation in sunflower oil as compared to alpha-tocopherol and BHA at the 200 ppm level. However, the higher concentration of Sch. commune's extract that provided the protective effect in stabilizing sunflower oil can be further studied.
    Matched MeSH terms: Functional Food/analysis*
  2. Phan CW, David P, Sabaratnam V
    J Med Food, 2017 Jan;20(1):1-10.
    PMID: 28098514 DOI: 10.1089/jmf.2016.3740
    There is an exponential increase in dementia in old age at a global level because of increasing life expectancy. The prevalence of neurodegenerative diseases such as dementia and Alzheimer's disease (AD) will continue to rise steadily, and is expected to reach 42 million cases worldwide in 2020. Despite the advancement of medication, the management of these diseases remains largely ineffective. Therefore, it is vital to explore novel nature-based nutraceuticals to mitigate AD and other age-related neurodegenerative disorders. Mushrooms and their extracts appear to hold many health benefits, including immune-modulating effects. A number of edible mushrooms have been shown to contain rare and exotic compounds that exhibit positive effects on brain cells both in vitro and in vivo. In this review, we summarize the scientific information on edible and culinary mushrooms with regard to their antidementia/AD active compounds and/or pharmacological test results. The bioactive components in these mushrooms and the underlying mechanism of their activities are discussed. In short, these mushrooms may be regarded as functional foods for the mitigation of neurodegenerative diseases.
    Matched MeSH terms: Functional Food/analysis*
  3. Agyei D, Acquah C, Tan KX, Hii HK, Rajendran SRCK, Udenigwe CC, et al.
    Anal Bioanal Chem, 2018 Jan;410(2):297-306.
    PMID: 28884330 DOI: 10.1007/s00216-017-0599-9
    Food-derived bioactive proteins and peptides have gained acceptance among researchers, food manufacturers and consumers as health-enhancing functional food components that also serve as natural alternatives for disease prevention and/or management. Bioactivity in food proteins and peptides is determined by their conformations and binding characteristics, which in turn depend on their primary and secondary structures. To maintain their bioactivities, the molecular integrity of bioactive peptides must remain intact, and this warrants the study of peptide form and structure, ideally with robust, highly specific and sensitive techniques. Short single-stranded nucleic acids (i.e. aptamers) are known to have high affinity for cognate targets such as proteins and peptides. Aptamers can be produced cost-effectively and chemically derivatized to increase their stability and shelf life. Their improved binding characteristics and minimal modification of the target molecular signature suggests their suitability for real-time detection of conformational changes in both proteins and peptides. This review discusses the developmental progress of systematic evolution of ligands by exponential enrichment (SELEX), an iterative technology for generating cost-effective aptamers with low dissociation constants (Kd) for monitoring the form and structure of bioactive proteins and peptides. The review also presents case studies of this technique in monitoring the structural stability of bioactive peptide formulations to encourage applications in functional foods. The challenges and potential of aptamers in this research field are also discussed. Graphical abstract Advancing bioactive proteins and peptide functionality via aptameric ligands.
    Matched MeSH terms: Functional Food/analysis*
  4. Kuan CY, Yee-Fung W, Yuen KH, Liong MT
    Crit Rev Food Sci Nutr, 2012;52(1):55-71.
    PMID: 21991990 DOI: 10.1080/10408398.2010.494259
    Nanotechnology is seeing higher propensity in various industries, including food and bioactives. New nanomaterials are constantly being developed from both natural biodegradable polymers of plant and animal origins such as polysaccharides and derivatives, peptides and proteins, lipids and fats, and biocompatible synthetic biopolyester polymers such as polylactic acid (PLA), polyhydroxyalkonoates (PHA), and polycaprolactone (PCL). Applications in food industries include molecular synthesis of new functional food compounds, innovative food packaging, food safety, and security monitoring. The relevance of bioactives includes targeted delivery systems with improved bioavailability using nanostructure vehicles such as association colloids, lipid based nanoencapsulator, nanoemulsions, biopolymeric nanoparticles, nanolaminates, and nanofibers. The extensive use of nanotechnology has led to the need for parallel safety assessment and regulations to protect public health and adverse effects to the environment. This review covers the use of biopolymers in the production of nanomaterials and the propensity of nanotechnology in food and bioactives. The exposure routes of nanoparticles, safety challenges, and measures undertaken to ensure optimal benefits that outweigh detriments are also discussed.
    Matched MeSH terms: Functional Food/analysis
  5. Noor Aziah AA, Komathi CA
    J Food Sci, 2009 Sep;74(7):S328-33.
    PMID: 19895499 DOI: 10.1111/j.1750-3841.2009.01298.x
    This study was intended to investigate the potential of peeled and unpeeled pumpkin pulp as a raw material for the production of flour that could be used in composite blend with wheat flour or as a functional ingredient in food products. The peeled and unpeeled pumpkin pulp were soaked in sodium metabisulphite solution, sliced and dried overnight in a hot air oven, followed by milling into peeled pumpkin pulp flour (PPPF) and unpeeled pumpkin pulp flour (UPPF), respectively. The flours were then evaluated for physicochemical attributes (color, proximate compositions, and water activity) and functional properties (water holding capacity and oil holding capacity), in comparison to the commercial wheat flour. PPPF and UPPF were observed to be more attractive in terms of color than wheat flour, as indicated by the significantly higher results (P or= 0.05) was shown in water holding capacity of PPPF and wheat flour. However, the oil holding capacity of PPPF and UPPF was shown to be significantly higher (P
    Matched MeSH terms: Functional Food/analysis*
  6. Agyei D, Pan S, Acquah C, Bekhit AEA, Danquah MK
    J Food Biochem, 2019 01;43(1):e12482.
    PMID: 31353495 DOI: 10.1111/jfbc.12482
    Peptides with biological properties, that is, bioactive peptides, are a class of biomolecules whose health-promoting properties are increasingly being exploited in food and health products. However, research on targeted techniques for the detection and quantification of these peptides is still in its infancy. Such information is needed in order to enhance the biological and chemometric characterization of peptides and their subsequent application in the functional food and pharmaceutical industries. In this review, the role of classic techniques such as electrophoretic, chromatographic, and peptide mass spectrometry in the structure-informed detection and quantitation of bioactive peptides are discussed. Prospects for the use of aptamers in the characterization of bioactive peptides are also discussed. PRACTICAL APPLICATIONS: Although bioactive peptides have huge potential applications in the functional foods and health area, there are limited techniques in enhancing throughput detection, quantification, and characterization of these peptides. This review discusses state-of-the-art techniques relevant in complementing bioactive detection and profiling irrespective of the small number of amino acid units. Insights into challenges, possible remedies and prevailing areas requiring thorough research in the extant literature for food chemists and biotechnologists are also presented.
    Matched MeSH terms: Functional Food/analysis
  7. Chang SK, Alasalvar C, Shahidi F
    Crit Rev Food Sci Nutr, 2019;59(10):1580-1604.
    PMID: 29360387 DOI: 10.1080/10408398.2017.1422111
    The term "superfruit" has gained increasing usage and attention recently with the marketing strategy to promote the extraordinary health benefits of some exotic fruits, which may not have worldwide popularity. This has led to many studies with the identification and quantification of various groups of phytochemicals. This contribution discusses phytochemical compositions, antioxidant efficacies, and potential health benefits of the main superfruits such as açai, acerola, camu-camu, goji berry, jaboticaba, jambolão, maqui, noni, and pitanga. Novel product formulations, safety aspects, and future perspectives of these superfruits have also been covered. Research findings from the existing literature published within the last 10 years have been compiled and summarized. These superfruits having numerous phytochemicals (phenolic acids, flavonoids, proanthocyanidins, iridoids, coumarins, hydrolysable tannins, carotenoids, and anthocyanins) together with their corresponding antioxidant activities, have increasingly been utilized. Hence, these superfruits can be considered as a valuable source of functional foods due to the phytochemical compositions and their corresponding antioxidant activities. The phytochemicals from superfruits are bioaccessible and bioavailable in humans with promising health benefits. More well-designed human explorative studies are needed to validate the health benefits of these superfruits.
    Matched MeSH terms: Functional Food/analysis
  8. Zulkawi N, Ng KH, Zamberi R, Yeap SK, Satharasinghe D, Jaganath IB, et al.
    BMC Complement Altern Med, 2017 Jun 30;17(1):344.
    PMID: 28666436 DOI: 10.1186/s12906-017-1845-6
    BACKGROUND: Xeniji, produced by fermenting various types of foods with lactic acid bacteria and yeast, has been commonly consumed as functional food. However, nutrition value, bioactivities and safety of different fermented products maybe varies.

    METHODS: Organic acid and antioxidant profiles of Xeniji fermented foods were evaluated. Moreover, oral acute (5 g/kg body weight) and subchronic toxicity (0.1, 1 and 2 g/kg body weight) of Xeniji were tested on mice for 14 days and 30 days, respectively. Mortality, changes of body weight, organ weight and serum liver enzyme level were measured. Liver and spleen of mice from subchronic toxicity study were subjected to antioxidant and immunomodulation quantification.

    RESULTS: Xeniji was rich in β-carotene, phytonadione, polyphenol, citric acid and essential amino acids. No mortality and significant changes of body weight and serum liver enzyme level were recorded for both oral acute and subchronic toxicity studies. Antioxidant level in the liver and immunity of Xeniji treated mice were significantly upregulated in dosage dependent manner.

    CONCLUSION: Xeniji is a fermented functional food that rich in nutrients that enhanced antioxidant and immunity of mice. Xeniji that rich in β-carotene, phytonadione, polyphenol, citric acid and essential amino acids promote antioxidant and immunity in mice without causing toxic effect.

    Matched MeSH terms: Functional Food/analysis*
  9. Al-Sheraji SH, Ismail A, Manap MY, Mustafa S, Yusof RM
    J Food Sci, 2012 Nov;77(11):M624-30.
    PMID: 23106104 DOI: 10.1111/j.1750-3841.2012.02955.x
    The viability and activity of Bifidobacterium pseudocatenulatum G4, B. longum BB 536 and yoghurt cultures (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus) were studied in yoghurt containing 0.75% Mangefira pajang fibrous polysaccharides (MPFP) and inulin. Growth of probiotic organisms, their proteolytic activities, the production of short chain fatty acids (lactic, acetic and propionic) and the pH of the yoghurt samples were determined during refrigerated storage at 4 °C for 28 d. B. pseudocatenulatum G4 and B. longum BB 536 showed better growth and activity in the presence of MPFP and inulin, which significantly increased the production of short chain fatty acids as well as the proteolytic activity of these organisms.
    Matched MeSH terms: Functional Food/analysis
  10. Haslinda WH, Cheng LH, Chong LC, Noor Aziah AA
    Int J Food Sci Nutr, 2009;60 Suppl 4:232-9.
    PMID: 19449278 DOI: 10.1080/09637480902915525
    Flour was prepared from peeled and unpeeled banana Awak ABB. Samples prepared were subjected to analysis for determination of chemical composition, mineral, dietary fibre, starch and total phenolics content, antioxidant activity and pasting properties. In general, flour prepared from unpeeled banana was found to show enhanced nutrition values with higher contents of mineral, dietary fibre and total phenolics. Hence, flour fortified with peel showed relatively higher antioxidant activity. On the other hand, better pasting properties were shown when banana flour was blended with peel. It was found that a relatively lower pasting temperature, peak viscosity, breakdown, final viscosity and setback were evident in a sample blended with peel.
    Matched MeSH terms: Functional Food/analysis*
  11. Kanagasabapathy G, Kuppusamy UR, Abd Malek SN, Abdulla MA, Chua KH, Sabaratnam V
    PMID: 23259700 DOI: 10.1186/1472-6882-12-261
    BACKGROUND: Pleurotus sajor-caju (P. sajor-caju) has been extremely useful in the prevention of diabetes mellitus due to its low fat and high soluble fiber content for thousands of years. Insulin resistance is a key component in the development of diabetes mellitus which is caused by inflammation. In this study, we aimed to investigate the in vivo efficacy of glucan-rich polysaccharide of P. sajor-caju (GE) against diabetes mellitus and inflammation in C57BL/6J mice fed a high-fat diet.
    METHODS: Diabetes was induced in C57BL/6J mice by feeding a high-fat diet. The mice were randomly assigned to 7 groups (n=6 per group). The control groups in this study were ND (for normal diet) and HFD (for high-fat diet). The treated groups were ND240 (for normal diet) (240 mg/kg b.w) and HFD60, HFD120 and HFD240 (for high-fat), where the mice were administrated with three dosages of GE (60, 120, 240 mg GE/kg b.w respectively). Metformin (2 mg/kg b.w) served as positive control. The glucose tolerance test, glucose and insulin levels were measured at the end of 16 weeks. Expressions of genes for inflammatory markers, GLUT-4 and adiponectin in the adipose tissue of the mice were assessed. One-way ANOVA and Duncan's multiple range tests (DMRT) were used to determine the significant differences between groups.
    RESULTS: GE treated groups improved the glucose tolerance, attenuated hyperglycemia and hyperinsulinemia in the mice by up-regulating the adiponectin and GLUT-4 gene expressions. The mice in GE treated groups did not develop insulin resistance. GE also down-regulated the expression of inflammatory markers (IL-6, TNF-α, SAA2, CRP and MCP-1) via attenuation of nuclear transcription factors (NF-κB).
    CONCLUSION: Glucan-rich polysaccharide of P. sajor-caju can serve as a potential agent for prevention of glucose intolerance, insulin resistance and inflammation.
    Matched MeSH terms: Functional Food/analysis
  12. Navarrete-Muñoz EM, Wark PA, Romaguera D, Bhoo-Pathy N, Michaud D, Molina-Montes E, et al.
    Am J Clin Nutr, 2016 Sep;104(3):760-8.
    PMID: 27510540 DOI: 10.3945/ajcn.116.130963
    BACKGROUND: The consumption of sweet beverages has been associated with greater risk of type 2 diabetes and obesity, which may be involved in the development of pancreatic cancer. Therefore, it has been hypothesized that sweet beverages may increase pancreatic cancer risk as well.

    OBJECTIVE: We examined the association between sweet-beverage consumption (including total, sugar-sweetened, and artificially sweetened soft drink and juice and nectar consumption) and pancreatic cancer risk.

    DESIGN: The study was conducted within the European Prospective Investigation into Cancer and Nutrition cohort. A total of 477,199 participants (70.2% women) with a mean age of 51 y at baseline were included, and 865 exocrine pancreatic cancers were diagnosed after a median follow-up of 11.60 y (IQR: 10.10-12.60 y). Sweet-beverage consumption was assessed with the use of validated dietary questionnaires at baseline. HRs and 95% CIs were obtained with the use of multivariable Cox regression models that were stratified by age, sex, and center and adjusted for educational level, physical activity, smoking status, and alcohol consumption. Associations with total soft-drink consumption were adjusted for juice and nectar consumption and vice versa.

    RESULTS: Total soft-drink consumption (HR per 100 g/d: 1.03; 95% CI: 0.99, 1.07), sugar-sweetened soft-drink consumption (HR per 100 g/d: 1.02; 95% CI: 0.97, 1.08), and artificially sweetened soft-drink consumption (HR per 100 g/d: 1.04; 95% CI: 0.98, 1.10) were not associated with pancreatic cancer risk. Juice and nectar consumption was inversely associated with pancreatic cancer risk (HR per 100 g/d: 0.91; 95% CI: 0.84, 0.99); this association remained statistically significant after adjustment for body size, type 2 diabetes, and energy intake.

    CONCLUSIONS: Soft-drink consumption does not seem to be associated with pancreatic cancer risk. Juice and nectar consumption might be associated with a modest decreased pancreatic cancer risk. Additional studies with specific information on juice and nectar subtypes are warranted to clarify these results.

    Matched MeSH terms: Functional Food/analysis
  13. Abdul Aziz NA, Wong LM, Bhat R, Cheng LH
    J Sci Food Agric, 2012 Feb;92(3):557-63.
    PMID: 25363645 DOI: 10.1002/jsfa.4606
    Mango is a highly perishable seasonal fruit and large quantities are wasted during the peak season as a result of poor postharvest handling procedures. Processing surplus mango fruits into flour to be used as a functional ingredient appears to be a good preservation method to ensure its extended consumption.
    Matched MeSH terms: Functional Food/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links