Displaying publications 1 - 20 of 68 in total

Abstract:
Sort:
  1. Azuddin NF, Mohamad Noor Azmy MS, Zakaria L
    Sci Rep, 2023 Mar 14;13(1):4239.
    PMID: 36918601 DOI: 10.1038/s41598-023-31291-7
    Lawn grass (Axonopus compressus) is a widely distributed grass species from the family Poaceae that is ubiquitous in Malaysia. We isolated endophytic fungi from the leaves of A. compressus and molecularly identified them as Fusarium parceramosum, Colletotrichum siamense, C. gigasporum, C. endophyticum, Curvularia lunata, Stagonospora bicolor, Calonectria gracilis, and Albifimbria verrucari. These fungal endophytes are considered host generalists, as they have been isolated from other plants and have also been reported to be latent plant pathogens. We tested the pathogenicity of selected endophytic fungal isolates on A. compressus leaves, chili (Capsicum annum), and tomato (Solanum lycopersicum), and found that they were pathogenic to wounded A. compressus leaves with low to moderate virulence, and several were pathogenic to wounded and unwounded chili and tomato fruits. This indicated that the endophytes could infect both vegetable fruits with low to very high virulence. Pathogenicity tests demonstrated that endophytic fungi from the leaves of A. compressus can become pathogenic and infect the host and other plant species. The findings also indicated that leaves of A. compressus may harbor pathogens with latent ability that can become active due to changes in environmental conditions, thereby disrupting the balance between host-endophyte antagonism.
    Matched MeSH terms: Fusarium*
  2. Salleh B, Strange RN
    J. Gen. Microbiol., 1988 Mar;134(3):841-7.
    PMID: 3183622
    In the course of a plant disease survey of the Malaysian Peninsula (Malaysia comprises the Malaysian Peninsula, Sabah and Sarawak) during the period 1981-1986, more than 1000 isolates of Fusarium were obtained from diseased plants and seeds. Two further isolates were obtained from patients admitted to hospitals in the same area. The occurrences of F. proliferatum, F. nygamai and F. longipes are new records for the Malaysian Peninsula and the association of F. solani and F. oxysporum var. redolens with human diseases does not seem to have been reported previously. Ten representative species which could be classified into seven sections of the genus were selected for studies of their toxigenicity in liquid cultures and/or on rice. Crude toxin preparations from culture filtrates or extracts of the inoculated rice were tested for toxicity to brine shrimp larvae and tobacco mesophyll protoplasts. The protoplasts were more sensitive than the brine shrimp larvae to the toxin preparations, except those from the isolates of F. solani and F. oxysporum var. redolens obtained from either humans or tobacco. The toxicity of the preparations from rice cultures per g rice was always greater than the toxicity per ml of culture filtrates from cultures grown on Czapek-Dox broth, Czapek-Dox supplemented with 1% (w/v) peptone or Czapek-Dox supplemented with 5% (w/v) tobacco extract. The activity of all toxin preparations was stable to heat. It is concluded that the occurrence of toxigenic species of Fusarium in the Malaysian Peninsula is widespread and that they may pose a serious threat to the health of human, animal and plant populations.
    Matched MeSH terms: Fusarium/isolation & purification*; Fusarium/pathogenicity
  3. Chehri K, Salleh B, Yli-Mattila T, Soleimani MJ, Yousefi AR
    Pak J Biol Sci, 2010 Dec 15;13(24):1178-86.
    PMID: 21313898
    Fusarium is one of the most important pathogenic and toxigenic fungi widely distributed all over the world, including Iran. Fusarium species are found frequently in stored agriculture products especially wheat. The objective of this study was to identify Fusarium species associated with stored wheat seeds and their pathogenicity on root and head of wheat in Kermanshah, the leading province in wheat production in Iran. In this survey 75 seed samples of stored wheat were collected from 10 different regions during 2006-2008 and tested for the presence of Fusarium. Fusarium spp. were found in 51 (68%) of 75 samples. A total of 580 Fusarium strains were isolated, identified and preserved. All these strains belong to 20 Fusarium spp. according to morphological characters. Each conidial suspension of selected strains representing all species was evaluated for their pathogenicity on roots and spikes of healthy wheat var. Fallat in the greenhouse. F. graminearum, F. crookwellense, F. trichothecioides, F. culmorum and F. verticillioides were the most pathogenic to wheat's head. Foot rot assessment revealed that F. pseudograminearum and F. culmorum were the most damaging species. Of the Fusarium isolates, F. graminearum was the most prevalent followed by F. verticillioides and F. proliferatum. This is the first comprehensive report on identity and distribution of Fusarium spp. from stored wheat seeds in Iran while F. nelsonii was reported for the first time from wheat seeds in Iran.
    Matched MeSH terms: Fusarium/classification; Fusarium/isolation & purification*; Fusarium/pathogenicity
  4. Omar NH, Mohd M, Mohamed Nor NMI, Zakaria L
    Microb Pathog, 2018 Jan;114:362-368.
    PMID: 29233777 DOI: 10.1016/j.micpath.2017.12.026
    Leaf spot diseases are mainly caused by fungi including Fusarium. In the present study several species of Fusarium were isolated from the leaf spot lesion of mango (Mangifera indica L.) Based on morphological characteristics, TEF-1α sequences and phylogenetic analysis, five species were identified as F. proliferatum, F. semitectum, F. mangiferae, F. solani and F. chlamydosporum. Pathogenicity test indicated that representative isolates of F. proliferatum, F. semitectum and F. chlamydosporum were pathogenic on mango leaves causing leaf spot with low to moderate virulence. Nevertheless, abundance of spots on the leaf can disrupt photosynthesis which in turn reduced growth, and lead to susceptibility to infection by opportunistic pathogens due to weakening of the plant. Fusarium solani and F. mangiferae were non-pathogenic and it is possible that both species are saprophyte which associated with nutrient availability on the surface of the leaf through decaying leave tissues. The occurrence of Fusarium spp. on the leaf spot lesion and the effect from the disease needs to be considered when developing disease management method of mango cultivation as numerous spot on the leaves could effect the photosynthesis process and finally giving low yield and less quality of mango.
    Matched MeSH terms: Fusarium/cytology*; Fusarium/genetics; Fusarium/isolation & purification*; Fusarium/pathogenicity*
  5. Hafizi R, Salleh B, Latiffah Z
    Braz J Microbiol, 2013;44(3):959-68.
    PMID: 24516465
    Crown disease (CD) is infecting oil palm in the early stages of the crop development. Previous studies showed that Fusarium species were commonly associated with CD. However, the identity of the species has not been resolved. This study was carried out to identify and characterize through morphological approaches and to determine the genetic diversity of the Fusarium species. 51 isolates (39%) of Fusarium solani and 40 isolates (31%) of Fusarium oxysporum were recovered from oil palm with typical CD symptoms collected from nine states in Malaysia, together with samples from Padang and Medan, Indonesia. Based on morphological characteristics, isolates in both Fusarium species were classified into two distinct morphotypes; Morphotypes I and II. Molecular characterization based on IGS-RFLP analysis produced 27 haplotypes among the F. solani isolates and 33 haplotypes for F. oxysporum isolates, which indicated high levels of intraspecific variations. From UPGMA cluster analysis, the isolates in both Fusarium species were divided into two main clusters with the percentage of similarity from 87% to 100% for F. solani, and 89% to 100% for F. oxysporum isolates, which was in accordance with the Morphotypes I and II. The results of the present study indicated that F. solani and F. oxysporum associated with CD of oil palm in Malaysia and Indonesia were highly variable.
    Matched MeSH terms: Fusarium/classification; Fusarium/cytology*; Fusarium/genetics*; Fusarium/isolation & purification
  6. Mostert D, Molina AB, Daniells J, Fourie G, Hermanto C, Chao CP, et al.
    PLoS One, 2017;12(7):e0181630.
    PMID: 28719631 DOI: 10.1371/journal.pone.0181630
    Fusarium oxysporum formae specialis cubense (Foc) is a soil-borne fungus that causes Fusarium wilt, which is considered to be the most destructive disease of bananas. The fungus is believed to have evolved with its host in the Indo-Malayan region, and from there it was spread to other banana-growing areas with infected planting material. The diversity and distribution of Foc in Asia was investigated. A total of 594 F. oxysporum isolates collected in ten Asian countries were identified by vegetative compatibility groups (VCGs) analysis. To simplify the identification process, the isolates were first divided into DNA lineages using PCR-RFLP analysis. Six lineages and 14 VCGs, representing three Foc races, were identified in this study. The VCG complex 0124/5 was most common in the Indian subcontinent, Vietnam and Cambodia; whereas the VCG complex 01213/16 dominated in the rest of Asia. Sixty-nine F. oxysporum isolates in this study did not match any of the known VCG tester strains. In this study, Foc VCG diversity in Bangladesh, Cambodia and Sri Lanka was determined for the first time and VCGs 01221 and 01222 were first reported from Cambodia and Vietnam. New associations of Foc VCGs and banana cultivars were recorded in all the countries where the fungus was collected. Information obtained in this study could help Asian countries to develop and implement regulatory measures to prevent the incursion of Foc into areas where it does not yet occur. It could also facilitate the deployment of disease resistant banana varieties in infested areas.
    Matched MeSH terms: Fusarium/genetics; Fusarium/physiology*
  7. Singh H, Jamal F, Marahakim MN, Chin CS
    Med J Malaysia, 1981 Jun;36(2):89-91.
    PMID: 7343825
    The first culture-proven case zn Malaysia of fungal keratitis, due to Fusarium solani, is presented, followed by a brief discussion of mycotic keratitis.
    Matched MeSH terms: Fusarium*
  8. Yazid SNE, Tajudin NI, Razman NAA, Selamat J, Ismail SI, Sanny M, et al.
    Mycotoxin Res, 2023 Aug;39(3):177-192.
    PMID: 37219742 DOI: 10.1007/s12550-023-00484-4
    The present work investigated the potential of fungal species from grain maize farms in Malaysia as antagonists against the indigenous mycotoxigenic fungal species and their subsequent mycotoxin production. Dual-culture assay was conducted on grain maize agar (GMA) with 12 strains of potential fungal antagonists namely Bjerkandra adusta, Penicillium janthinellum, Schizophyllum commune, Trametes cubensis, Trichoderma asperelloides, Trichoderma asperellum, Trichoderma harzianum, and Trichoderma yunnanense against seven mycotoxigenic strains namely Aspergillus flavus, Aspergillus niger, Fusarium verticillioides, and Fusarium proliferatum producing aflatoxins, ochratoxin A, and fumonisins, respectively. Based on fungal growth inhibition, Trichoderma spp. showed the highest inhibitory activity (73-100% PIRG, Percentage Inhibition of Radial Growth; 28/0 ID, Index of Dominance) against the tested mycotoxigenic strains. Besides, B. adusta and Tra. cubensis showed inhibitory activity against some of the tested mycotoxigenic strains. All fungal antagonists showed varying degrees of mycotoxin reduction. Aflatoxin B1 produced by A. flavus was mainly reduced by P. janthinellum, Tra. cubensis, and B. adusta to 0 ng/g. Ochratoxin A produced by A. niger was mainly reduced by Tri. harzianum and Tri. asperellum to 0 ng/g. Fumonisin B1 and FB2 produced by F. verticillioides was mainly reduced by Tri. harzianum, Tri. asperelloides, and Tri. asperellum to 59.4 and 0 µg/g, respectively. Fumonisin B1 and FB2 produced by F. proliferatum were mainly reduced by Tri. asperelloides and Tri. harzianum to 244.2 and 0 µg/g, respectively. This is the first study that reports on the efficacy of Tri. asperelloides against FB1, FB2, and OTA, P. janthinellum against AFB1, and Tra. cubensis against AFB1.
    Matched MeSH terms: Fusarium*
  9. Awaludin N, Nagata R, Kawasaki T, Kushiro M
    Toxins (Basel), 2009 Dec;1(2):188-95.
    PMID: 22069540 DOI: 10.3390/toxins1020188
    Mycotoxin contamination in rice is less reported, compared to that in wheat or maize, however, some Fusarium fungi occasionally infect rice in the paddy field. Fumonisins are mycotoxins mainly produced by Fusarium verticillioides, which often ruins maize. Rice adherent fungus Gibberella fujikuroi is taxonomically near to F. verticillioides, and there are sporadic reports of fumonisin contamination in rice from Asia, Europe and the United States. Therefore, there exists the potential risk of fumonisin contamination in rice as well as the need for the validated analytical method for fumonisins in rice. Although both natural and spiked reference materials are available for some Fusarium mycotoxins in matrices of wheat and maize, there are no reference materials for Fusarium mycotoxins in rice. In this study, we have developed a method for the preparation of a reference material containing fumonisins in Thai rice. A ShakeMaster grinding machine was used for the preparation of a mixed material of blank Thai rice and F. verticillioides-infected Thai rice. The homogeneity of the mixed material was confirmed by one-way analysis of variance, which led this material to serve as an in-house reference material. Using this reference material, several procedures to extract fumonisins from Thai rice were compared. Accordingly, we proved the applicability of an effective extraction procedure for the determination of fumonisins in Japanese rice.
    Matched MeSH terms: Fusarium
  10. Latiffah Z, Mah Kok F, Heng Mei H, Maziah Z, Baharuddin S
    Trop Life Sci Res, 2010 Aug;21(1):21-9.
    PMID: 24575187 MyJurnal
    A total of 33 isolates of Fusarium sp. were isolated from soil samples collected from a mangrove forest in an area in Kampung Pantai Acheh, Balik Pulau, Pulau Pinang, Malaysia. The isolates were isolated using soil dilution, direct isolation and debris isolation techniques. The debris isolation technique yielded the most isolates, with a total of 22 Fusarium isolates. Based on identification using morphological characteristics, three Fusarium species were identified: F. solani, F. oxysporum and F. verticillioides. F. solani (91%) was the most common species recovered from the mangrove soil samples, followed by F. oxysporum (6%) and F. verticillioides (3%).
    Matched MeSH terms: Fusarium
  11. Latiffah Zakaria, Muhamad Izham Muhamad Jamil, Intan Sakinah Mohd Anuar
    Trop Life Sci Res, 2016;27(1):153-162.
    MyJurnal
    Endophytic fungi inhabit apparently healthy plant tissues and are prevalent in
    terrestrial plants, especially root tissues, which harbour a wide assemblage of fungal
    endophytes. Therefore, this study focused on the isolation and characterisation of
    endophytic fungi from the roots of wild banana (Musa acuminata). A total of 31 isolates of
    endophytic fungi were isolated from 80 root fragments. The endophytic fungi were initially
    sorted according to morphological characteristics and identified using the sequences of
    the translation elongation factor-1α (TEF-1α) gene of Fusarium spp. and the Internal
    Transcribed Spacer (ITS) regions of other fungi. The most common fungal isolates were
    species of the genus Fusarium, which were identified as F. proliferatum, Fusarium sp.,
    F. solani species complex, and F. oxysporum. Other isolated endophytic fungi included
    Curvularia lunata, Trichoderma atroviride, Calonectria gracilis, Rhizoctonia solani,
    Bionectria ochroleuca, and Stromatoneurospora phoenix (Xylariceae). Several of the
    fungal genera, such as Fusarium, Trichoderma, Rhizoctonia, and Xylariceae, are among
    the common fungal endophytes reported in plants. This study showed that the roots of wild
    banana harbour a diverse group of endophytic fungi.
    Matched MeSH terms: Fusarium
  12. Abd Murad NB, Mohamed Nor NMI, Shohaimi S, Mohd Zainudin NAI
    J Appl Microbiol, 2017 Dec;123(6):1533-1546.
    PMID: 28891270 DOI: 10.1111/jam.13582
    AIMS: The aims of this study were to identify the Fusarium isolates based on translation elongation factor (tef) 1α sequence, to determine the genetic diversity among isolates and species using selected microsatellite markers and to examine the pathogenicity of Fusarium isolates causing fruit rot disease of banana.

    METHODS AND RESULTS: One-hundred and thirteen microfungi isolates were obtained from fruit rot infected banana in Peninsular Malaysia. However, this study was focused on the dominant number of the discovered microfungi that belongs to the genus Fusarium; 48 isolates of the microfungi have been identified belonging to 11 species of Fusarium, namely Fusarium incarnatum, Fusarium equiseti, Fusarium camptoceras, Fusarium solani, Fusarium concolor, Fusarium oxysporum, Fusarium proliferatum, Fusarium verticillioides, Fusarium sacchari, Fusarium concentricum and Fusarium fujikuroi. All Fusarium isolates were grouped into their respective clades indicating their similarities and differences in genetic diversity among isolates. Out of 48 Fusarium isolates tested, 42 isolates caused the fruit rot symptom at different levels of severity based on Disease Severity Index (DSI). The most virulent isolate was F. proliferatum B2433B with DSI of 100%.

    CONCLUSIONS: All the isolated Fusarium species were successfully identified and some of them were confirmed as the causal agents of pre- and postharvest fruit rot in banana across Peninsular Malaysia.

    SIGNIFICANCE AND IMPACT OF THE STUDY: Our results will provide additional information regarding new report of Fusarium species in causing banana fruit rot and in the search of potential biocontrol agent of the disease.

    Matched MeSH terms: Fusarium/genetics*; Fusarium/isolation & purification; Fusarium/pathogenicity
  13. Getha K, Vikineswary S
    J Ind Microbiol Biotechnol, 2002 Jun;28(6):303-10.
    PMID: 12032802
    Fusarium oxysporum f.sp. cubense is the causal pathogen of wilt disease of banana. A cost-effective measure of control for this disease is still not available. Streptomyces violaceusniger strain G10 acts as an antifungal agent antagonistic towards many different phytopathogenic fungi, including different pathogenic races of the Fusarium wilt pathogen. In an attempt to understand the mode of action of this antagonist in nature, the interaction between S. violaceusniger strain G10 and F. oxysporum f.sp. cubense was first studied by paired incubation on agar plates. Evidence for the in vitro antibiosis of strain G10 was demonstrated by inhibition zones in the "cross-plug" assay plates. Microscopic observations showed lysis of hyphal ends in the inhibited fungal colonies. Culture of strain G10 in liquid media produces antifungal metabolites, which showed in vitro antagonistic effects against F. oxysporum f.sp. cubense such as swelling, distortion and excessive branching of hyphae, and inhibition of spore germination. An indirect method was used to show that antibiosis is one of the mechanisms of antagonism by which strain G10 acts against F. oxysporun f.sp. cubense in soil. This study suggests the potential of developing strain G10 for the biological control of Fusarium wilt disease of banana.
    Matched MeSH terms: Fusarium/classification; Fusarium/growth & development; Fusarium/isolation & purification; Fusarium/physiology*
  14. Getha K, Vikineswary S, Wong WH, Seki T, Ward A, Goodfellow M
    J Ind Microbiol Biotechnol, 2005 Jan;32(1):24-32.
    PMID: 15650871
    Streptomyces sp. strain g10 exhibited strong antagonism towards Fusarium oxysporum f.sp. cubense (Foc) races 1, 2 and 4 in plate assays by producing extracellular antifungal metabolites. Treating the planting hole and roots of 4-week-old tissue-culture-derived 'Novaria' banana plantlets with strain g10 suspension (10(8) cfu/ml), significantly (P < 0.05) reduced wilt severity when the plantlets were inoculated with 10(4) spores/ml Foc race 4. The final disease severity index for leaf symptom (LSI) and rhizome discoloration (RDI) was reduced about 47 and 53%, respectively, in strain g10-treated plantlets compared to untreated plantlets. Reduction in disease incidence was not significant (P < 0.05) when plantlets were inoculated with a higher concentration (10(6) spores/ml) of Foc race 4. Rhizosphere population of strain g10 showed significant (P = 0.05) increase of more than 2-fold at the end of the 3rd week compared to the 2nd week after soil amendment with the antagonist. Although the level dropped, the rhizosphere population at the end of the 6th week was still nearly 2-fold higher than the level detected after 2 weeks. In contrast, the root-free population declined significantly (P = 0.05), nearly 4-fold after 6 weeks when compared to the level detected after 2 weeks. Neither growth-inhibiting nor growth-stimulating effects were observed in plantlets grown in strain g10-amended soil.
    Matched MeSH terms: Fusarium/growth & development*
  15. Zakaria L, Ning CH
    Trop Life Sci Res, 2013 Dec;24(2):85-90.
    PMID: 24575251 MyJurnal
    Fungal endophytes are found inside host plants but do not produce any noticeable disease symptoms in their host. In the present study, endophytic Fusarium species were isolated from roots of lawn grass (Axonopus compressus). A total of 51 isolates were recovered from 100 root segments. Two Fusarium species, F. oxysporum (53%) and F. solani (47%), were identified based on macroconidia and conidiogenous cell morphology. The detection of endophytic F. oxysporum and F. solani in the roots of lawn grass contributes to the knowledge of both the distribution of the two Fusarium species and the importance of roots as endophytic niches for Fusarium species.
    Matched MeSH terms: Fusarium
  16. Noraziah Mohamad Zin, Marlini Othman
    MyJurnal
    Bakteria endofit adalah berpotensi untuk menghasilkan antibiotik dan metabolit sekunder yang lain. Penghasilan metabolit sekunder dapat ditingkatkan melalui pengoptimuman kandungan nutrien seperti sumber nitrogen. Dalam kajian ini kandungan sumber nitrogen iaitu ammonium sulfat, ammonium dihidrogen fosfat, kalium nitrat dan natrum nitrat telah diubahsuai di dalam kaldu International Streptomyces Project 4 (ISP4) untuk pertumbuhan Streptomyces SUK 02. Pengekstrakan dilakukan dengan menggunakan etil asetat dan aktiviti antifungus ditentukan dengan menggunakan teknik serapan agar. Fungus ujian yang digunakan adalah Aspergillus fumigatus dan Fusarium solani. Hasil kajian menunjukkan peratusan berat (w/v) ekstrak kasar maksima didapati daripada kaldu yang mengandungi natrium nitrat (3.30%), diikuti oleh ammonium dihidrogen fosfat (2.24%), ammonium sulfat (1.46%) dan kalium nitrat (1.20%). Aktiviti antifungus dikesan daripada ekstrak bersumberkan nitrogen ammonium sulfat.Peratus perencatan ekstrak tersebut terhadap Aspergillus fumigatus dan Fusarium solani adalah 33.0-35.0% dan 17.4-30.0%, masing-masing. Manakala nilai MIC terhadap Aspergillus fumigatus adalah 1.5 mg/ml. Sebagai kesimpulan, natrium nitrat merupakan sumber nitrogen yang sesuai bagi partumbuhan optimum Streptomyces SUK 02 manakala kehadiran ammonium sulfat boleh meningkatkan aktiviti antifungus.
    Matched MeSH terms: Fusarium
  17. Yap LS, Lee WL, Ting ASY
    J Microbiol Methods, 2021 12;191:106358.
    PMID: 34743930 DOI: 10.1016/j.mimet.2021.106358
    L-asparaginase from endophytic Fusarium proliferatum (isolate CCH, GenBank accession no. MK685139) isolated from the medicinal plant Cymbopogon citratus (Lemon grass), was optimized for its L-asparaginase production and its subsequent cytotoxicity towards Jurkat E6 cell line. The following factors were optimized; carbon source and concentration, nitrogen source and concentration, incubation period, temperature, pH and agitation rate. Optimization of L-asparaginase production was performed using One-Factor-At-A-Time (OFAT) and Response surface methodology (RSM) model. The cytotoxicity of the crude enzyme from isolate CCH was tested on leukemic Jurkat E6 cell line. The optimization exercise revealed that glucose concentration, nitrogen source, L-asparagine concentration and temperature influenced the L-asparaginase production of CCH. The optimum condition suggested using OFAT and RSM results were consistent. As such, the recommended conditions were 0.20% of glucose, 0.99% of L-asparagine and 5.34 days incubation at 30.50 °C. The L-asparaginase production of CCH increased from 16.75 ± 0.76 IU/mL to 22.42 ± 0.20 IU/mL after optimization. The cytotoxicity of the crude enzyme on leukemic Jurkat cell line recorded IC50 value at 33.89 ± 2.63% v/v. To conclude, the enzyme extract produced from Fusarium proliferatum under optimized conditions is a potential alternative resource for L-asparaginase.
    Matched MeSH terms: Fusarium/enzymology; Fusarium/genetics; Fusarium/metabolism*
  18. Heng MH, Baharuddin S, Latiffah Z
    Genet. Mol. Res., 2012;11(1):383-92.
    PMID: 22370941 DOI: 10.4238/2012.February.16.4
    Fusarium species section Liseola namely F. fujikuroi, F. proliferatum, F. andiyazi, F. verticillioides, and F. sacchari are well-known plant pathogens on rice, sugarcane and maize. In the present study, restriction analysis of the intergenic spacer regions (IGS) was used to characterize the five Fusarium species isolated from rice, sugarcane and maize collected from various locations in Peninsular Malaysia. From the analysis, and based on restriction patterns generated by the six restriction enzymes, Bsu151, BsuRI, EcoRI, Hin6I, HinfI, and MspI, 53 haplotypes were recorded among 74 isolates. HinfI showed the most variable restriction patterns (with 11 patterns), while EcoRI showed only three patterns. Although a high level of variation was observed, it was possible to characterize closely related species and isolates from different species. UPGMA cluster analysis showed that the isolates of Fusarium from the same species were grouped together regardless of the hosts. We conclude that restriction analysis of the IGS regions can be used to characterize Fusarium species section Liseola and to discriminate closely related species as well as to clarify their taxonomic position.
    Matched MeSH terms: Fusarium/genetics*; Fusarium/isolation & purification
  19. Samsudin NI, Rodriguez A, Medina A, Magan N
    Int J Food Microbiol, 2017 Apr 04;246:72-79.
    PMID: 28213318 DOI: 10.1016/j.ijfoodmicro.2017.02.004
    This study was carried out to examine the efficacy of two biocontrol agents (Clonostachys rosea 016, BCA1; Gram-negative bacterium, BCA5) for control of FUM1 gene expression and fumonisin B1 (FB1) production by F. verticillioides FV1 on maize cobs of different ripening stages: R3, Milk (0.985 aw); R4, Dough (0.976 aw); R5, Dent (0.958 aw). Initially, temporal studies on FUM1 gene expression and FB1 production were performed on maize kernels for up to 14days. This revealed that day 10 was optimum for both parameters, and was used in the biocontrol studies. Maize cobs were inoculated with 50:50 mixtures of the pathogen:antagonist inoculum and incubated in environmental chambers to maintain the natural aw conditions for ten days at 25 and 30°C. The growth rates of F. verticillioides FV1, the relative expression of the FUM1 gene and FB1 production were quantified. It was found that, aw×temp had significant impacts on growth, FUM1 gene expression and FB1 production by F. verticillioides FV1 on maize cobs of different maturities. The fungal antagonist (BCA1) significantly reduced FB1 contamination on maize cobs by >70% at 25°C, and almost 60% at 30°C regardless of maize ripening stage. For the bacterial antagonist (BCA5) however, FB1 levels on maize cobs were significantly decreased only in some treatments. These results suggest that efficacy of antagonists to control mycotoxin production in ripening maize cobs needs to take account of the ecophysiology of the pathogen and the antagonists, as well as the physiological status of the maize during silking to ensure effective control.
    Matched MeSH terms: Fusarium/genetics*; Fusarium/metabolism
  20. Lau ET, Khew CY, Hwang SS
    J Biotechnol, 2020 May 20;314-315:53-62.
    PMID: 32302654 DOI: 10.1016/j.jbiotec.2020.03.014
    Black pepper is an important commodity crop in Malaysia that generates millions of annual revenue for the country. However, black pepper yield is affected by slow decline disease caused by a soil-borne fungus Fusarium solani. RNA sequencing transcriptomics approach has been employed in this study to explore the differential gene expression in susceptible Piper nigrum L. and resistant Piper colubrinum Link. Gene expression comparative analysis of the two pepper species has yielded 2,361 differentially expressed genes (DEGs). Among them, higher expression of 1,426 DEGs was detected in resistant plant. These DEGs practically demonstrated the major branches of plant-pathogen interaction pathway (Path: ko04626). We selected five groups of defence-related DEGs for downstream qRT-PCR analysis. Cf-9, the gene responsible for recognizing fungal avirulence protein activity was found inexpressible in susceptible plant. However, this gene exhibited promising expression in resistant plant. Inactivation of Cf-9 could be the factor that causes susceptible plant fail in recognition of F. solani and subsequently delay activation of adaptive response to fungal invasion. This vital study advance the understanding of pepper plant defence in response to F. solani and aid in identifying potential solution to manage slow decline disease in black pepper cultivation.
    Matched MeSH terms: Fusarium/pathogenicity; Fusarium/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links