Displaying publications 1 - 20 of 896 in total

Abstract:
Sort:
  1. Palaniandy, Samayamutthirian, Khairun Azizi Mohd Azizli, Hashim Hussin, Syed Fuad Saiyid Hashim
    MyJurnal
    Mechanical activation of quartz was carried out in jet mill at various specific kinetic energy level and classifier speed. The characterization of the particle size, crystallite size, amorphism rate and lattice strain was conducted on the feed and mechanically activated particles. The area under the prominent quartz peak was used to calculate the amorphism rate of the mechanically activated particles. Scherer equation was used to determine the crystallite size of the feed and mechanically activated particles. Mean particle size less than 5μm was obtained when the specific kinetic energy is ranging between 500 kWh/ton and 1000 kWh/ton. Amorphism of the mechanically activated particles up to 18% was observed at 500 kWh/ton. The crystallite size and lattice strain is influence by the intensity of the specific kinetic energy and classifier speed. The reduction in the crystallite size up to 39% was observed where the minimum crystallite is 23nm. The lattice strain is ranging from 0.024 to 0.038 respective to the specific kinetic energy and classifier speed.
    Matched MeSH terms: Kinetics
  2. Ali A, Sharma RK, Ganesan P, Akib S
    ScientificWorldJournal, 2014;2014:412136.
    PMID: 25136666 DOI: 10.1155/2014/412136
    A numerical investigation of incompressible and transient flow around circular pipe has been carried out at different five gap phases. Flow equations such as Navier-Stokes and continuity equations have been solved using finite volume method. Unsteady horizontal velocity and kinetic energy square root profiles are plotted using different turbulence models and their sensitivity is checked against published experimental results. Flow parameters such as horizontal velocity under pipe, pressure coefficient, wall shear stress, drag coefficient, and lift coefficient are studied and presented graphically to investigate the flow behavior around an immovable pipe and scoured bed.
    Matched MeSH terms: Kinetics
  3. Wong LY, Lau SY, Pan S, Lam MK
    Chemosphere, 2022 Jan;287(Pt 2):132129.
    PMID: 34509009 DOI: 10.1016/j.chemosphere.2021.132129
    The suitability and efficacy of three-dimensional (3D) graphene, including its derivatives, have garnered widespread attention towards the development of novel, sustainable materials with ecological amenability. This is especially relevant towards its utilization as adsorbents of wastewater contaminants, such as heavy metals, dyes, and oil, which could be majorly attributed to its noteworthy physicochemical features, particularly elevated chemical and mechanical robustness, advanced permeability, as well as large specific surface area. In this review, we emphasize on the adsorptive elimination of oil particles from contaminated water. Specifically, we assess and collate recent literature on the conceptualization and designing stages of 3D graphene-based adsorbents (3DGBAs) towards oil adsorption, including their applications in either batch or continuous modes. In addition, we analytically evaluate the adsorption mechanism, including sorption sites, physical properties, surface chemistry of 3DGBA and interactions between the adsorbent and adsorbate involving the adsorptive removal of oil, as well as numerous effects of adsorption conditions on the adsorption performance, i.e. pH, temperature, initial concentration of oil contaminants and adsorbent dosage. Furthermore, we focus on the equilibrium isotherms and kinetic studies, in order to comprehend the oil elimination procedures. Lastly, we designate encouraging avenues and recommendations for a perpetual research thrust, and outline the associated future prospects and perspectives.
    Matched MeSH terms: Kinetics
  4. Karamba KI, Ahmad SA, Zulkharnain A, Yasid NA, Ibrahim S, Shukor MY
    3 Biotech, 2018 Jan;8(1):11.
    PMID: 29259886 DOI: 10.1007/s13205-017-1025-x
    The evaluation of degradation and growth kinetics of Serratia marcescens strain AQ07 was carried out using three half-order models at all the initial concentrations of cyanide with the values of regression exceeding 0.97. The presence of varying cyanide concentrations reveals that the growth and degradation of bacteria were affected by the increase in cyanide concentration with a total halt at 700 ppm KCN after 72 h incubation. In this study, specific growth and degradation rates were found to trail the substrate inhibition kinetics. These two rates fitted well to the kinetic models of Teissier, Luong, Aiba and Heldane, while the performance of Monod model was found to be unsatisfactory. These models were used to clarify the substrate inhibition on the bacteria growth. The analyses of these models have shown that Luong model has fitted the experimental data with the highest coefficient of determination (R2) value of 0.9794 and 0.9582 with the lowest root mean square error (RMSE) value of 0.000204 and 0.001, respectively, for the specific rate of degradation and growth. It is the only model that illustrates the maximum substrate concentration (Sm) of 713.4 and empirical constant (n) of 1.516. Tessier and Aiba fitted the experimental data with a R2 value of 0.8002 and 0.7661 with low RMSE of 0.0006, respectively, for specific biodegradation rate, while having a R2 value of 0.9 and RMSE of 0.001, respectively, for specific growth rate. Haldane has the lowest R2 value of 0.67 and 0.78 for specific biodegradation and growth rate with RMSE of 0.0006 and 0.002, respectively. This indicates the level of the bacteria stability in varying concentrations of cyanide and the maximum cyanide concentration it can tolerate within a specific time period. The biokinetic constant predicted from this model demonstrates a good ability of the locally isolated bacteria in cyanide remediation in industrial effluents.
    Matched MeSH terms: Kinetics
  5. Song J, Cha L, Sillanpää M, Sainio T
    Water Sci Technol, 2023 Apr;87(7):1672-1685.
    PMID: 37051790 DOI: 10.2166/wst.2023.083
    Excessive phosphorus causes eutrophication problems. The adsorptive removal of phosphate is prevalent and practical in large-scale applications, such as column adsorption. A metal organic framework (MOF)-enhanced layered double hydroxide (LDH) adsorbent material was developed and studied for batch adsorption and then combined with polyacrylonitrile (PAN) to form MOF/LDH/PAN composite beads working as a functional material for columns. Scanning electron microscopy (SEM) images showed the well-dispersed adsorbent powder in porous composite beads. The Fowler-Guggenheim isotherm model described the phosphate adsorption behavior of the MOF/LDH powder with a maximum capacity of 74.96 mg P/g. Mass transfer in the composite beads was successfully described with the Fickian diffusion model. The composite-packed fixed bed treated 37.95 BVs of the influent (55.51 mg P/L phosphate solution) and achieved an uptake of 18.92 mg P/g, with a removal efficiency of 96.42%, before the breakthrough point in the column study. The phosphate-loaded composite bed was regenerated with 0.1 M NaOH to 70% efficiency within 30 BVs. The polymer composite can be considered a practical solution for adsorption-based water treatment applications in tank and column processes where powder adsorbents cannot be applied.
    Matched MeSH terms: Kinetics
  6. Lim TY, Wagiran H, Hussin R, Hashim S
    Appl Radiat Isot, 2015 Aug;102:10-4.
    PMID: 25933405 DOI: 10.1016/j.apradiso.2015.04.005
    The paper presents the thermoluminescence (TL) response of strontium tetraborate glass subjected to electron irradiations at various Dy2O3 concentrations ranging from 0.00 to 1.00mol%. All glass samples exhibited single broad peak with maximum peak temperature positioned at 170-215°C. The optimum TL response was found at Dy2O3 concentration 0.75mol%. This glass showed good linearity and higher sensitivity for 7MeV compared to 6MeV electrons. Analysis of kinetic parameters showed that the glasses demonstrate second order kinetic.
    Matched MeSH terms: Kinetics
  7. Nur Shazwani Abdul Mubarak, S. Sabar, Ali H. Jawad
    Science Letters, 2020;14(1):68-83.
    MyJurnal
    Commercial titanium dioxide Degussa P25 (TiO2) was used for the adsorption of reactive red 120
    (RR120) dye in a batch system. The optimization functions such as solution pH (3-12), adsorbent dosage (0.02 g-1.2 g), and initial dye concentration (30-400 mg/L) were studied. The equilibrium adsorption data for RR120 dye was analyzed by two types of isotherm models which are Langmuir and Freundlich models. The adsorption at equilibrium showed a better fit for linear Langmuir isotherm with the adsorption capacity, qmax of 18.62 mg/g at 303 K. The adsorption kinetic was well-described by pseudosecond order model. TiO2 showed a decent outcome due to the ability to adsorb target pollutants with theadded advantage of providing large hydroxyl groups (OH) on the surface of TiO2 so that pollutants can be adsorbed by interacting on the surface of OH.
    Matched MeSH terms: Kinetics
  8. Muhammad Ridwan Fahmi, Che Zulzikrami Azner Abidin, Ong Sa, Abdul Haqi Ibrahim, Siti Nasuha Sabri, Nur Aqilah Razali, et al.
    Sains Malaysiana, 2018;47:1085-1091.
    Oxidation of p-Cresol was investigated by using ozonation process. The aim of this research is to assess the effectiveness
    of ozonation on oxidation of micropollutant such as p-Cresol. Ozonation performance was evaluated based on p-Cresol
    concentration reduction and chemical oxidation demand (COD) reduction. It was found ozonation at pH11 achieved
    the highest p-Cresol degradation, with 95.8% of p-Cresol reduced and 96.0% of COD reduced, for an initial 50 mgL-1
    of p-Cresol. The degradation of p-Cresol could be expressed by second-order of kinetic model. The second-order rate
    constant k increases as the initial pH increased, but decreases with the increasing of initial p-Cresol concentrations.
    Besides, the absorption spectra of p-Cresol over ozonation time were analyzed by spectrophotometry. The evolution of
    absorption spectra of p-Cresol degradation suggests that the oxidation of p-Cresol follows three stages mechanisms
    with cycloaddition as the first step to produce aromatic intermediates followed by ring-opening reactions, degradation
    of the intermediates, and subsequently achieved mineralization.
    Matched MeSH terms: Kinetics
  9. Loy ACM, Yusup S, How BS, Yiin CL, Chin BLF, Muhammad M, et al.
    Bioresour Technol, 2019 Dec;294:122089.
    PMID: 31526932 DOI: 10.1016/j.biortech.2019.122089
    The aim of this study was to understand the influence of catalyst in thermal degradation behavior of rice husk (RH) in catalytic fast pyrolysis (CFP) process. An iso-conversional Kissinger kinetic model was introduced into this study to understand the activation energy (EA), pre-exponential value (A), Enthalpy (ΔH), Entropy (ΔS) and Gibb's energy (ΔG) of non-catalytic fast pyrolysis (NCFP) and CFP of RH. The study revealed that the addition of natural zeolite catalyst enhanced the rate of devolatilization and decomposition of RH associated with lowest EA value (153.10 kJ/mol) compared to other NCFP and CFP using nickel catalyst. Lastly, an uncertainty estimation was applied on the best fit non-linear regression model (MNLR) to identify the explanatory variables. The finding showed that it had the highest probability to obtain 73.8-74.0% mass loss in CFP of rice husk using natural zeolite catalyst.
    Matched MeSH terms: Kinetics
  10. Salema AA, Ting RMW, Shang YK
    Bioresour Technol, 2019 Feb;274:439-446.
    PMID: 30553084 DOI: 10.1016/j.biortech.2018.12.014
    The aim of this study was to pyrolyze individual (oil palm shell, empty fruit bunch and sawdust) as well as blend biomass in a thermogravimetric mass spectrometry (TG-MS) from room temperature to 800 °C at constant heating rate of 15 °C/min. The results showed that the onset TG temperature for blend biomass shifted slightly to lower values. Activation energy values were also found to decrease slightly after blending the biomass. Interestingly, the MS spectra of selected gases (H2O CH4, H2O, C2H2, C2H4 or CO, CH2O, CH3OH, HCl, C3H6, CO2, HCOOH, and C6H12) evolved from blend biomass showed decreased in the intensity as compared to their individual biomass. Overall, the blend biomass showed synergy which provides ways to expand the possibility of utilizing multiple feedstocks in one thermo-chemical system.
    Matched MeSH terms: Kinetics
  11. Majid M, Chin BLF, Jawad ZA, Chai YH, Lam MK, Yusup S, et al.
    Bioresour Technol, 2021 Jun;329:124874.
    PMID: 33647605 DOI: 10.1016/j.biortech.2021.124874
    This study investigated on the co-pyrolysis of microalgae Chlorella vulgaris and high-density polyethylene (HDPE) waste mixtures which was performed with three types of catalysts, namely limestone (LS), HZSM-5 zeolite, and novel bi-functional LS/HZSM-5/LS. Kissinger-Kai (K-K) model-free method was coupled with Particle Swarm Optimization (PSO) model-fitting method using the thermogravimetric experimental data. A global sensitivity analysis was carried out using Latin Hypercube Sampling and rank transformation to assess the extent of impact of the input kinetic parameters on the output results. Furthermore, a thermodynamic analysis was performed to obtain parameters such as enthalpy change (ΔH), Gibb's free energy (ΔG), and entropy change (ΔS). The activation energy (EA) of the microalgae Chlorella vulgaris and HDPE binary mixture were found to be lower upon the addition of catalysts. Among the catalyst used, bi-functional LS/HZSM-5 catalyst exhibited the lowest EA (83.59 kJ/mol) and ΔH (78 kJ/mol) as compared to LS and HZSM-5 catalysts.
    Matched MeSH terms: Kinetics
  12. Onwude DI, Hashim N, Janius RB, Nawi NM, Abdan K
    Compr Rev Food Sci Food Saf, 2016 May;15(3):599-618.
    PMID: 33401820 DOI: 10.1111/1541-4337.12196
    The drying of fruits and vegetables is a complex operation that demands much energy and time. In practice, the drying of fruits and vegetables increases product shelf-life and reduces the bulk and weight of the product, thus simplifying transport. Occasionally, drying may lead to a great decrease in the volume of the product, leading to a decrease in storage space requirements. Studies have shown that dependence purely on experimental drying practices, without mathematical considerations of the drying kinetics, can significantly affect the efficiency of dryers, increase the cost of production, and reduce the quality of the dried product. Thus, the use of mathematical models in estimating the drying kinetics, the behavior, and the energy needed in the drying of agricultural and food products becomes indispensable. This paper presents a comprehensive review of modeling thin-layer drying of fruits and vegetables with particular focus on thin-layer theories, models, and applications since the year 2005. The thin-layer drying behavior of fruits and vegetables is also highlighted. The most frequently used of the newly developed mathematical models for thin-layer drying of fruits and vegetables in the last 10 years are shown. Subsequently, the equations and various conditions used in the estimation of the effective moisture diffusivity, shrinkage effects, and minimum energy requirement are displayed. The authors hope that this review will be of use for future research in terms of modeling, analysis, design, and the optimization of the drying process of fruits and vegetables.
    Matched MeSH terms: Kinetics
  13. Titah HS, Purwanti IF, Tangahu BV, Kurniawan SB, Imron MF, Abdullah SRS, et al.
    J Environ Manage, 2019 May 15;238:194-200.
    PMID: 30851558 DOI: 10.1016/j.jenvman.2019.03.011
    The emergence of the aluminium recycling industry has led to an increase in aluminium-containing wastewater discharge to the environment. Biological treatment of metal is one of the solutions that can be provided as green technology. Screening tests showed that Brochothrix thermosphacta and Vibrio alginolyticus have the potential to remove aluminium from wastewater. Brochothrix thermosphacta removed up to 49.60%, while Vibrio alginolyticus was capable of removing up to 59.72% of 100 mg/L aluminium in acidic conditions. The removal of aluminium by V. alginolyticus was well fitted with pseudo-first-order kinetics (k1 = 0.01796/min), while B. thermosphacta showed pseudo-second-order kinetics (k2 = 0.125612 mg substrate/g adsorbent. hr) in the process of aluminium removal. V. alginolyticus had a higher rate constant under acidic conditions, while B. thermosphacta had a higher rate constant under neutral pH conditions.
    Matched MeSH terms: Kinetics
  14. Chai A, Wong YS, Ong SA, Aminah Lutpi N, Sam ST, Kee WC, et al.
    Bioresour Technol, 2021 Sep;336:125319.
    PMID: 34049168 DOI: 10.1016/j.biortech.2021.125319
    A pilot scale anaerobic degradation of sugarcane vinasse was carried out at various hydraulic retention time (HRT) in the Anaerobic Suspended Growth Closed Bioreactor (ASGCB) under thermophilic temperature. The performance and kinetics were evaluated through the Haldane-Andrews model to investigate the substrate inhibition potential of sugarcane vinasse. All parameters show great performance between HRT 35 and 25 days: chemical oxygen demand (COD) reduction efficiency (81.6 to 86.8%), volatile fatty acids (VFA) reduction efficiency (92.4 to 98.5%), maximum methane yield (70%) and maximum biogas production (19.35 L/day). Furthermore, steady state values from various HRT were obtained in the kinetic evaluation for: rXmax (1.20 /day), Ks (19.95 gCOD/L), Ki (7.00 gCOD/L) and [Formula: see text] (0.33 LCH4/gCOD reduction). This study shows that anaerobic degradation of sugarcane vinasse through ASGCB could perform well at high HRT and provides a low degree of substrate inhibition as compared to existing studies from literature.
    Matched MeSH terms: Kinetics
  15. Jayawardhana Y, Keerthanan S, Lam SS, Vithanage M
    Environ Res, 2021 06;197:111102.
    PMID: 33798520 DOI: 10.1016/j.envres.2021.111102
    The present study investigated adsorptive removal of toluene and ethylbenzene from the aqueous media via using biochar derived from municipal solid waste (termed "MSW-BC") in a single and binary contaminant system at 25-45 °C. The adsorption was evaluated at different pH (3-10), experimental time (up to 24 h), and initial adsorbate concentrations (10-600 μg/L) in single and binary contaminant system. A fixed-bed column experiment was also conducted using MSW-BC (0.25%) and influent concentration of toluene and ethylbenzene (4 mg/L) at 2 mL/min of flow rate. The adsorption of toluene and ethylbenzene on the MSW-BC was mildly dependent on the pH, and the peak adsorption ability (44-47 μg/g) was recorded at a baseline pH of ~8 in mono and dual contaminant system. Langmuir and Hill are the models that match the isotherm results in a single contaminant environment for both toluene (R2 of 0.97 and 0.99, respectively) and ethylbenzene (R2 of 0.99 and 0.99, respectively) adsorption. In the binary system, the isotherm models matched in the order of Langmuir > Hill > Freundlich for toluene, whereas Hill > Freundlich > Langmuir for ethylbenzene. The adsorption in the batch experiment was likely to take place via cooperative and multilayer adsorption onto MSW-BC involving hydrophobic, π- π and n- π attractions, specific interaction such as hydrogen-π and cation-π interactions, and van der Waals interactions. The thermodynamic results indicate exothermic adsorption occurred by physical attractions between toluene and ethylbenzene, and MSW-BC. The breakthrough behavior of toluene and ethylbenzene was successfully described with Yoon-Nelson and Thomas models. The data demonstrate that the low-cost adsorbent derived from the municipal solid waste can be utilized to remove toluene and ethylbenzene in landfill leachate.
    Matched MeSH terms: Kinetics
  16. Hai A, Bharath G, Daud M, Rambabu K, Ali I, Hasan SW, et al.
    Chemosphere, 2021 Nov;283:131162.
    PMID: 34157626 DOI: 10.1016/j.chemosphere.2021.131162
    Pyrolysis of agricultural biomass is a promising technique for producing renewable energy and effectively managing solid waste. In this study, groundnut shell (GNS) was processed at 500 °C in an inert gas atmosphere with a gas flow rate and a heating rate of 10 mL/min and 10 °C/min, respectively, in a custom-designed fluidized bed pyrolytic-reactor. Under optimal operating conditions, the GNS-derived pyrolytic-oil yield was 62.8 wt.%, with the corresponding biochar (19.5 wt.%) and biogas yields (17.7 wt.%). The GC-MS analysis of the GNS-based bio-oil confirmed the presence of (trifluoromethyl)pyridin-2-amine (18.814%), 2-Fluoroformyl-3,3,4,4-tetrafluoro-1,2-oxazetidine (16.23%), 5,7-dimethyl-1H-Indazole (11.613%), N-methyl-N-nitropropan-2-amine (6.5%) and butyl piperidino sulfone (5.668%) as major components, which are used as building blocks in the biofuel, pharmaceutical, and food industries. Furthermore, a 2 × 5 × 1 artificial neural network (ANN) architecture was developed to predict the decomposition behavior of GNS at heating rates of 5, 10, and 20 °C/min, while the thermodynamic and kinetic parameters were estimated using a non-isothermal model-free method. The Popescu method predicted activation energy (Ea) of GNS biomass ranging from 111 kJ/mol to 260 kJ/mol, with changes in enthalpy (ΔH), Gibbs-free energy (ΔG), and entropy (ΔS) ranging from 106 to 254 kJ/mol, 162-241 kJ/mol, and -0.0937 to 0.0598 kJ/mol/K, respectively. The extraction of high-quality precursors from GNS pyrolysis was demonstrated in this study, as well as the usefulness of the ANN technique for thermogravimetric analysis of biomass.
    Matched MeSH terms: Kinetics
  17. Asdarina, Y., Abdurrahman, H.N., Amirah, N.F.S., Natrah, S.A.R., Norasmah, M.M., Zulkafli, H.
    MyJurnal
    Increasing demands in palm oil industry hence resulting the production of palm oil to increase. It is then creating a major problem in disposing the waste to be treat in appropriate ways. The governments are forced to look for alternative technology for the palm oil mill effluent (POME) treatment because the demand of oil increases with the awareness on increasing environmental issue. Therefore, a new technology must be found in order to reduce energy consumption, to meet legal requirements on emission and for cost reduction and also increased quality of water treatment. Membrane Anaerobic System (MAS) is a promising alternative way to overcome these issues. In this study, the efficiency of the MAS performance increases to 99.03% in ten days operation. The application of Monod, Contois and Chen & Hashimoto models were used to analyze the performance of MAS for treating POME. The results from the experiment show the substrate removal model is well fits for estimation of kinetics membrane anaerobic system. Amongst them, the Contois and Monod models predicted the bio-kinetic reactions of the MAS very well with coefficient of determination (R2>97%) values. The MAS bioreactor was creating to be an improvement method as well as successful biological treatment since the graph shows linearized which is good agreement with reported in literature.
    Matched MeSH terms: Kinetics
  18. Hussin MH, Pohan NA, Garba ZN, Kassim MJ, Rahim AA, Brosse N, et al.
    Int J Biol Macromol, 2016 Jun 30;92:11-19.
    PMID: 27373428 DOI: 10.1016/j.ijbiomac.2016.06.094
    The present study sheds light on the physical and chemical characteristics of microcrystalline cellulose (MCC) isolated from oil palm fronds (OPF) pulps. It was found that the OPF MCC was identified as cellulose II polymorph, with higher crystallinity index than OPF α-cellulose (CrIOPFMCC: 71%>CrIOPFα-cellulose: 47%). This indicates that the acid hydrolysis allows the production of cellulose that is highly crystalline. BET surface area of OPF MCC was found to be higher than OPF α-cellulose (SBETOPFMCC: 5.64m(2)g(-1)>SBETOPFα-cellulose:Qa(0) 2.04m(2)g(-1)), which corroborates their potential as an adsorbent. In batch adsorption studies, it was observed that the experimental data fit well with Langmuir adsorption isotherm in comparison to Freundlich isotherm. The monolayer adsorption capacity (Qa(0)) of OPF MCC was found to be around 51.811mgg(-1) and the experimental data fitted well to pseudo-second-order kinetic model.
    Matched MeSH terms: Kinetics
  19. Othman, N., Kamarudin, S.K., Mamat, M.R., Azman, A., Rosli, M.I., Takrif, M.S.
    MyJurnal
    In this study, the numerical simulation in a mixing vessel agitated by a six bladed Rushton turbine has
    been carried out to investigate the effects of effective parameters to the mixing process. The study is intended to screen the potential parameters which affect the optimization process and to provide the detail insights into the process. Three-dimensional and steady-state flow has been performed using the fully predictive Multiple Reference Frame (MRF) technique for the impeller and tank geometry. Process optimization is always used to ensure the optimum conditions are fulfilled to attain industries’ satisfaction or needs (ie; increase profit, low cost, yields, etc). In this study, the range of recommended speed to accelerate optimization is 100, 150 and 200rpm respectively and the range of recommended clearance is 50, 75 and 100mm respectively for dual Rushton impeller. Thus, the computer fluid dynamics (CFD) was introduced in order to screen the suitable parameters efficiently and to accelerate optimization. In this study,
    Matched MeSH terms: Kinetics
  20. Firdaus Kamaruzaman, Siti Habibah Shafiai
    MyJurnal
    Lattice Boltzmann Model for Shallow Water Equation with Turbulence Modeling (LABSWETM) is used to study the flow patterns of sidewall friction effects. The lattice Boltzmann method (LBM) approach in recovery the macroscopic governing equation which is shallow water equation from the microscopic flow behavior of particle movement as described by kinetic theory is explored. With the solution of force term to be used in lattice Boltzmann equation, the boundary condition of LBM is explored. With the use of bed and wall friction coefficients, the importance of Manning’s coefficient in determining the outcome of flow patterns simulation is explained. For model verification, the model represents a straight channel with a circular cavity attached to it. The result of this simulation includes the water circulation patterns, cross-section of average velocity distribution, and water depth. For validation, the cross-sections of the model in term of velocity vectors are compared against alternative numerical and experimental data.
    Matched MeSH terms: Kinetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links