Displaying publications 1 - 20 of 42 in total

Abstract:
Sort:
  1. Lai MY, Lau YL
    Am J Trop Med Hyg, 2022 Oct 12;107(4):815-819.
    PMID: 35970289 DOI: 10.4269/ajtmh.22-0136
    We developed a combination of recombinase polymerase and loop-mediated isothermal amplification methods (RAMP) for rapid screening of five human Plasmodium spp. simultaneously. RAMP is a two-stage isothermal amplification method, which consists of a first-stage recombinase polymerase amplification and a second-stage loop-mediated isothermal amplification. Under these two isothermal conditions, five Plasmodium spp. were amplified in less than 40 minutes. We demonstrated RAMP assay with 10-fold better limit of detection than a single (loop-mediated isothermal amplification) LAMP. As compared with microscopy, RAMP assay showed 100% sensitivity (95% CI: 95.65-100.00%) and 100% specificity (95% CI: 69.15-100.00%). The end products were inspected by the color changes of neutral red. Positive reactions were indicated by pink while the negative reactions remained yellow. The combination assay established in this study can be used as a routine diagnostic method for malaria.
    Matched MeSH terms: Molecular Diagnostic Techniques/methods
  2. Lai MY, Abdul Hamid MH, Jelip J, Mudin RN, Lau YL
    Am J Trop Med Hyg, 2024 Apr 03;110(4):648-652.
    PMID: 38412548 DOI: 10.4269/ajtmh.23-0572
    Loop-mediated isothermal amplification (LAMP) is a nucleic acid amplification technique that can amplify specific nucleic acids at a constant temperature (63-65°C) within a short period (<1 hour). In this study, we report the utilization of recombinase-aided LAMP to specifically amplify the 18S sRNA of Plasmodium knowlesi. The method was built on a conventional LAMP assay by inclusion of an extra enzyme, namely recombinase, into the master mixture. With the addition of recombinase into the LAMP assay, the assay speed was executed within a time frame of less than 28 minutes at 65°C. We screened 55 P. knowlesi samples and 47 non-P. knowlesi samples. No cross-reactivity was observed for non-P. knowlesi samples, and the detection limit for recombinase-aided LAMP was one copy for P. knowlesi after LAMP amplification. It has been reported elsewhere that LAMP can be detected through fluorescent readout systems. Although such systems result in considerable limits of detection, the need for sophisticated equipment limits their use. Hence, we used here a colorimetric detection platform for the evaluation of the LAMP assay's performance. This malachite green-based recombinase-aided LAMP assay enabled visualization of results with the naked eye. Negative samples were observed by a change in color from green to colorless, whereas positive samples remained green. Our results demonstrate that the LAMP assay developed here is a convenient, sensitive, and useful diagnostic tool for the rapid detection of knowlesi malaria parasites. This method is suitable for implementation in remote healthcare settings, where centralized laboratory facilities, funds, and clinicians are in short supply.
    Matched MeSH terms: Molecular Diagnostic Techniques/methods
  3. Selvarajah D, Naing C, Htet NH, Mak JW
    Malar J, 2020 Jun 19;19(1):211.
    PMID: 32560728 DOI: 10.1186/s12936-020-03283-9
    BACKGROUND: The global malaria decline has stalled and only a few countries are pushing towards pre-elimination. The aim of the malaria elimination phase is interruption of local transmission of a specified malaria parasite in a defined geographical area. New and improved screening tools and strategies are required for detection and management of very low-density parasitaemia in the field. The objective of this study was to synthesize evidence on the diagnostic accuracy of loop-mediated isothermal amplification (LAMP) test for the detection of malaria parasites among people living in endemic areas.

    METHODS: This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis for Diagnostic Test Accuracy (PRISMA-DTA) guideline. Relevant studies in the health-related electronic databases were searched. According to the criteria set for this study, eligible studies were identified. The quality of included studies was evaluated with the use of a quality assessment checklist. A summary performance estimates such as pooled sensitivity and specificity were stratified by type of LAMP. Bivariate model for data analyses was applied. Summary receiver operating characteristics plots were created to display the results of individual studies in a receiver operating characteristics space. Meta-regression analysis was performed to investigate the sources of heterogeneity among individual studies.

    RESULTS: Twenty-seven studies across 17 endemic countries were identified. The vast majority of studies were with unclear risk of bias in the selection of index test. Overall, the pooled test performances were high for Pan LAMP (sensitivity: 0.95, 95% CI 0.91 to 0.97; specificity: 0.98, 95% CI 0.95 to 0.99), Plasmodium falciparum (Pf) LAMP (sensitivity: 0.96, 95% CI 0.94 to 0.98; specificity: 0.99, 95% CI 0.96 to 1.00) or for Plasmodium vivax (Pv) LAMP from 6 studies (sensitivity: 0.98, 95% CI 0.92 to 0.99; specificity: 0.99, 95% CI 0.72 to 1.00). The area under the curve for Pan LAMP (0.99, 95% CI 0.98-1.00), Pf LAMP (0.99, 95% CI 0.97-0.99) and Pv LAMP was (1.00, 95% CI 0.98-1.00) indicated that the diagnostic performance of these tests were within the excellent accuracy range. Meta-regression analysis showed that sample size had the greatest impact on test performance, among other factors.

    CONCLUSIONS: The current findings suggest that LAMP-based assays are appropriate for detecting low-level malaria parasite infections in the field and would become valuable tools for malaria control and elimination programmes. Future well-designed larger sample studies on LAMP assessment in passive and active malaria surveillances that use PCR as the reference standard and provide sufficient data to construct 2 × 2 diagnostic table are needed.

    Matched MeSH terms: Molecular Diagnostic Techniques/methods*
  4. Martín Ramírez A, Barón Argos L, Lanza Suárez M, Carmona Rubio C, Pérez-Ayala A, Hisam SR, et al.
    Pathog Glob Health, 2024 Feb;118(1):80-90.
    PMID: 37415348 DOI: 10.1080/20477724.2023.2232595
    Malaria is a parasitic disease distributed in tropical areas but with a high number of imported cases in non-endemic countries. The most specific and sensitive malaria diagnostic methods are PCR and LAMP. However, both require specific equipment, extraction procedures and a cold chain. This study aims to solve some limitations of LAMP method with the optimization and validation of six LAMP assays, genus and species-specific, using an easy and fast extraction method, the incorporation of a reaction control assay, two ways (Dual) of result reading and reagent lyophilization. The Dual-LAMP assays were validated against the Nested-Multiplex Malaria PCR. A conventional column and saline extraction methods, and the use of lyophilized reaction tubes were also assessed. A new reaction control Dual-LAMP-RC assay was designed. Dual-LAMP-Pspp assay showed no cross-reactivity with other parasites, repeatability and reproducibility of 100%, a significant correlation between parasite concentration and time to amplification and a LoD of 1.22 parasites/µl and 5.82 parasites/µl using column and saline extraction methods, respectively. Sensitivity and specificity of the six Dual-LAMP assays reach values of 100% or close to this, being lower for the Dual-LAMP-Pm. The Dual-LAMP-RC assay worked as expected. Lyophilized Dual-LAMP results were concordant with the reference method. Dual-LAMP malaria assays with the addition of a new reaction control LAMP assay and the use of a fast and easy saline extraction method, provided low limit of detection, no cross-reactivity, and good sensitivity and specificity. Furthermore, the reagent lyophilization and the dual result reading allow their use in most settings.
    Matched MeSH terms: Molecular Diagnostic Techniques/methods
  5. Sue MJ, Yeap SK, Omar AR, Tan SW
    Biomed Res Int, 2014;2014:653014.
    PMID: 24971343 DOI: 10.1155/2014/653014
    Polymerase chain reaction-enzyme linked immunosorbent assay (PCR-ELISA) is an immunodetection method that can quantify PCR product directly after immobilization of biotinylated DNA on a microplate. This method, which detects nucleic acid instead of protein, is a much more sensitive method compared to conventional PCR method, with shorter analytical time and lower detection limit. Its high specificity and sensitivity, together with its semiquantitative ability, give it a huge potential to serve as a powerful detection tool in various industries such as medical, veterinary, and agricultural industries. With the recent advances in PCR-ELISA, it is envisaged that the assay is more widely recognized for its fast and sensitive detection limit which could improve overall diagnostic time and quality.
    Matched MeSH terms: Molecular Diagnostic Techniques/methods*
  6. Lau YL, Ismail IB, Izati Binti Mustapa N, Lai MY, Tuan Soh TS, Hassan AH, et al.
    Am J Trop Med Hyg, 2020 Dec;103(6):2350-2352.
    PMID: 33098286 DOI: 10.4269/ajtmh.20-1079
    A simple and rapid reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for the detection of SARS-CoV-2. The RT-LAMP assay was highly specific for SARS-CoV-2 and was able to detect one copy of transcribed SARS-CoV-2 RNA within 24 minutes. Assay validation performed using 50 positive and 32 negative clinical samples showed 100% sensitivity and specificity. The RT-LAMP would be valuable for clinical diagnosis and epidemiological surveillance of SARS-CoV-2 infection in resource-limited areas as it does not require the use of sophisticated and costly equipment.
    Matched MeSH terms: Molecular Diagnostic Techniques/methods
  7. Maran S, Faten SA, Lim SE, Lai KS, Ibrahim WPW, Ankathil R, et al.
    Biomed Res Int, 2020;2020:6945730.
    PMID: 33062692 DOI: 10.1155/2020/6945730
    Background: The 22q11.2 deletion syndrome (22q11.2DS) is the most common form of deletion disorder in humans. Low copy repeats flanking the 22q11.2 region confers a substrate for nonallelic homologous recombination (NAHR) events leading to rearrangements which have been reported to be associated with highly variable and expansive phenotypes. The 22q11.2DS is reported as the most common genetic cause of congenital heart defects (CHDs).

    Methods: A total of 42 patients with congenital heart defects, as confirmed by echocardiography, were recruited. Genetic molecular analysis using a fluorescence in situ hybridization (FISH) technique was conducted as part of routine 22q11.2DS screening, followed by multiplex ligation-dependent probe amplification (MLPA), which serves as a confirmatory test.

    Results: Two of the 42 CHD cases (4.76%) indicated the presence of 22q11.2DS, and interestingly, both cases have conotruncal heart defects. In terms of concordance of techniques used, MLPA is superior since it can detect deletions within the 22q11.2 locus and outside of the typically deleted region (TDR) as well as duplications.

    Conclusion: The incidence of 22q11.2DS among patients with CHD in the east coast of Malaysia is 0.047. MLPA is a scalable and affordable alternative molecular diagnostic method in the screening of 22q11.2DS and can be routinely applied for the diagnosis of deletion syndromes.

    Matched MeSH terms: Molecular Diagnostic Techniques/methods*
  8. Vythalingam LM, Hossain MAM, Bhassu S
    Mol Cell Probes, 2021 02;55:101683.
    PMID: 33259896 DOI: 10.1016/j.mcp.2020.101683
    Invasive alien fish species have become a silent treat towards the ecosystem especially the native fish population in Malaysia. There has been a need to develop rapid identification methods that can aid management teams in identifying fish species that are not native to our ecosystem. Current visual identification methods are highly tedious and require time, delaying action towards curbing the invasion. The LAMP assay successfully identified six popular invasive fish species in Malaysia. None of the LAMP assays showed false positives and the Limit of Detection of the LAMP primers were highly sensitive and could detect DNA samples up to 1 × 10-15 ng/μl. The LAMP primers designed were highly specific to the target species and did not amplify non target species. DNA sequencing was done to ensure the accuracy of LAMP assay results. This study demonstrates that LAMP is a suitable tool in species identification efforts of invasive fish species in Malaysia.
    Matched MeSH terms: Molecular Diagnostic Techniques/methods*
  9. Lai MY, Tang SN, Lau YL
    Am J Trop Med Hyg, 2021 Jun 15;105(2):375-377.
    PMID: 34129521 DOI: 10.4269/ajtmh.21-0150
    Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been spreading rapidly all over the world. In the absence of effective treatments or a vaccine, there is an urgent need to develop a more rapid and simple detection technology of COVID-19. We describe a WarmStart colorimetric reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay for the detection of SARS-CoV-2. The detection limit for this assay was 1 copy/µL SARS-CoV-2. To test the clinical sensitivity and specificity of the assay, 37 positive and 20 negative samples were used. The WarmStart colorimetric RT-LAMP had 100% sensitivity and specificity. End products were detected by direct observation, thereby eliminating the need for post-amplification processing steps. WarmStart colorimetric RT-LAMP provides an opportunity to facilitate virus detection in resource-limited settings without a sophisticated diagnostic infrastructure.
    Matched MeSH terms: Molecular Diagnostic Techniques/methods*
  10. Lai MY, Bukhari FDM, Zulkefli NZ, Ismail I, Mustapa NI, Soh TST, et al.
    Int J Infect Dis, 2022 Jul;120:132-134.
    PMID: 35472524 DOI: 10.1016/j.ijid.2022.04.036
    OBJECTIVES: Preventing reverse transcription loop-mediated isothermal amplification (RT-LAMP) carryover contamination could be solved by adding deoxyuridine triphosphate (dUTP) and uracil-DNA glycosylase (UDG) into the reaction master mix.

    METHODS: RNA was extracted from nasopharyngeal swab samples by a simple RNA extraction method.

    RESULTS: Testing of 77 samples demonstrated 91.2% sensitivity (95% confidence interval [CI]: 78-98.2%) and 100% specificity (95% confidence interval: 92-100%) using UDG RT-LAMP.

    CONCLUSION: This colorimetric UDG RT-LAMP is a simple-to-use, fast, and easy-to-interpret method, which could serve as an alternative for diagnosis of SARS-CoV-2 infection, especially in remote hospitals and laboratories with under-equipped medical facilities.

    Matched MeSH terms: Molecular Diagnostic Techniques/methods
  11. Teoh BT, Sam SS, Tan KK, Johari J, Abd-Jamil J, Hooi PS, et al.
    Sci Rep, 2016 06 09;6:27663.
    PMID: 27278716 DOI: 10.1038/srep27663
    Timely and accurate dengue diagnosis is important for differential diagnosis and immediate implementation of appropriate disease control measures. In this study, we compared the usefulness and applicability of NS1 RDT (NS1 Ag Strip) and qRT-PCR tests in complementing the IgM ELISA for dengue diagnosis on single serum specimen (n = 375). The NS1 Ag Strip and qRT-PCR showed a fair concordance (κ = 0.207, p = 0.001). While the NS1 Ag Strip showed higher positivity than qRT-PCR for acute (97.8% vs. 84.8%) and post-acute samples (94.8% vs. 71.8%) of primary infection, qRT-PCR showed higher positivity for acute (58.1% vs. 48.4%) and post-acute (50.0% vs.41.4%) samples in secondary infection. IgM ELISA showed higher positivity in samples from secondary dengue (74.2-94.8%) than in those from primary dengue (21.7-64.1%). More primary dengue samples showed positive with combined NS1 Ag Strip/IgM ELISA (99.0% vs. 92.8%) whereas more secondary samples showed positive with combined qRT-PCR/IgM ELISA (99.4% vs. 96.2%). Combined NS1 Ag Strip/IgM ELISA is a suitable combination tests for timely and accurate dengue diagnosis on single serum specimen. If complemented with qRT-PCR, combined NS1 Ag Strip/IgM ELISA would improve detection of secondary dengue samples.
    Matched MeSH terms: Molecular Diagnostic Techniques/methods*
  12. Mohamed Zahidi J, Bee Yong T, Hashim R, Mohd Noor A, Hamzah SH, Ahmad N
    Diagn Microbiol Infect Dis, 2015 Apr;81(4):227-33.
    PMID: 25641125 DOI: 10.1016/j.diagmicrobio.2014.12.012
    Molecular approaches have been investigated to overcome difficulties in identification and differentiation of Brucella spp. using conventional phenotypic methods. In this study, high-resolution melt (HRM) analysis was used for rapid identification and differentiation of members of Brucella genus. A total of 41 Brucella spp. isolates from human brucellosis were subjected to HRM analysis using 4 sets of primers, which identified 40 isolates as Brucella melitensis and 1 as Brucella canis. The technique utilized low DNA concentration and was highly reproducible. The assay is shown to be a useful diagnostic tool, which can rapidly differentiate Brucella up to species level.
    Matched MeSH terms: Molecular Diagnostic Techniques/methods*
  13. Abdullah J, Saffie N, Sjasri FA, Husin A, Abdul-Rahman Z, Ismail A, et al.
    Braz J Microbiol, 2014;45(4):1385-91.
    PMID: 25763045
    An in-house loop-mediated isothermal amplification (LAMP) reaction was established and evaluated for sensitivity and specificity in detecting the presence of Salmonella Typhi (S. Typhi) isolates from Kelantan, Malaysia. Three sets of primers consisting of two outer and 4 inner were designed based on locus STBHUCCB_38510 of chaperone PapD of S. Typhi genes. The reaction was optimised using genomic DNA of S. Typhi ATCC7251 as the template. The products were visualised directly by colour changes of the reaction. Positive results were indicated by green fluorescence and negative by orange colour. The test was further evaluated for specificity, sensitivity and application on field samples. The results were compared with those obtained by gold standard culture method and Polymerase Chain Reaction (PCR). This method was highly specific and -10 times more sensitive in detecting S. Typhi compared to the optimised conventional polymerase chain reaction (PCR) method.
    Matched MeSH terms: Molecular Diagnostic Techniques/methods*
  14. Lau YL, Anthony C, Fakhrurrazi SA, Ibrahim J, Ithoi I, Mahmud R
    Parasit Vectors, 2013;6(1):250.
    PMID: 23985047 DOI: 10.1186/1756-3305-6-250
    Amebiasis caused by Entamoeba histolytica is the third leading cause of death worldwide. This pathogenic amoeba is morphologically indistinguishable from E. dispar and E. moshkovskii, the non-pathogenic species. Polymerase chain reaction is the current method of choice approved by World Health Organization. Real-time PCR is another attractive molecular method for diagnosis of infectious diseases as post-PCR analyses are eliminated and turnaround times are shorter. The present work aimed to compare the results of Entamoeba species identification using the real-time assay against the established nested PCR method.
    Matched MeSH terms: Molecular Diagnostic Techniques/methods*
  15. Issa R, Mohd Hassan NA, Abdul H, Hashim SH, Seradja VH, Abdul Sani A
    Diagn Microbiol Infect Dis, 2012 Jan;72(1):62-7.
    PMID: 22078904 DOI: 10.1016/j.diagmicrobio.2011.09.021
    A real-time quantitative polymerase chain reaction (qPCR) was developed for detection and discrimination of Mycobacterium tuberculosis (H37Rv and H37Ra) and M. bovis bacillus Calmette-Guérin (BCG) of the Mycobacterium tuberculosis complex (MTBC) from mycobacterial other than tuberculosis (MOTT). It was based on the melting curve (Tm) analysis of the gyrB gene using SYBR(®) Green I detection dye and the LightCycler 1.5 system. The optimal conditions for the assay were 0.25 μmol/L of primers with 3.1 mmol/L of MgCl(2) and 45 cycles of amplification. For M. tuberculosis (H37Rv and H37Ra) and M. bovis BCG of the MTBC, we detected the crossing points (Cp) at cycles of 16.96 ± 0.07, 18.02 ± 0.14, and 18.62 ± 0.09, respectively, while the Tm values were 90.19 ± 0.06 °C, 90.27 ± 0.09 °C, and 89.81 ± 0.04 °C, respectively. The assay was sensitive and rapid with a detection limit of 10 pg of the DNA template within 35 min. In this study, the Tm analysis of the qPCR assay was applied for the detection and discrimination of MTBC from MOTT.
    Matched MeSH terms: Molecular Diagnostic Techniques/methods*
  16. Lau YL, Fong MY, Mahmud R, Chang PY, Palaeya V, Cheong FW, et al.
    Malar J, 2011;10:197.
    PMID: 21774805 DOI: 10.1186/1475-2875-10-197
    The emergence of Plasmodium knowlesi in humans, which is in many cases misdiagnosed by microscopy as Plasmodium malariae due to the morphological similarity has contributed to the needs of detection and differentiation of malaria parasites. At present, nested PCR targeted on Plasmodium ssrRNA genes has been described as the most sensitive and specific method for Plasmodium detection. However, this method is costly and requires trained personnel for its implementation. Loop-mediated isothermal amplification (LAMP), a novel nucleic acid amplification method was developed for the clinical detection of P. knowlesi. The sensitivity and specificity of LAMP was evaluated in comparison to the results obtained via microscopic examination and nested PCR.
    Matched MeSH terms: Molecular Diagnostic Techniques/methods*
  17. Yap NJ, Koehler AV, Ebner J, Tan TK, Lim YA, Gasser RB
    Mol Cell Probes, 2016 Feb;30(1):39-43.
    PMID: 26775614 DOI: 10.1016/j.mcp.2016.01.002
    Despite the importance of the cattle industry in Malaysia, there are very few studies of the diversity and public health significance of bovine cryptosporidiosis in this country. In the present study, we used a PCR-based approach to detect and genetically characterize Cryptosporidium DNA in faecal samples from a cohort of 215 asymptomatic cattle (of different ages) from six farms from five states of Peninsular Malaysia. Cattle on four of the six farms were test-positive for Cryptosporidium, with an overall prevalence of 3.2%. Cryptosporidium bovis and Cryptosporidium ryanae were detected in two (0.9%) and five (2.3%) samples tested; this low prevalence likely relates to the age of the cattle tested, as most (73%) of the samples tested originated from cattle that were ≥2 years of age. Future studies should investigate the zoonotic potential of Cryptosporidium in pre-weaned and weaned calves in rural communities of Malaysia.
    Matched MeSH terms: Molecular Diagnostic Techniques/methods
  18. Boush MA, Djibrine MA, Mussa A, Talib M, Maki A, Mohammed A, et al.
    Sci Rep, 2020 07 30;10(1):12822.
    PMID: 32733079 DOI: 10.1038/s41598-020-69756-8
    In remote areas of malaria-endemic countries, rapid diagnostic tests (RDTs) have dramatically improved parasitological confirmation of suspected malaria cases, especially when skilled microscopists are not available. This study was designed to determine the frequency of Plasmodium falciparum isolates with histidine-rich protein 2 (pfhrp2) gene deletion as one of the possible factors contributing to the failure of PfHRP2-based RDTs in detecting malaria. A total of 300 blood samples were collected from several health centres in Nyala City, Western Sudan. The performance of PfHRP2-based RDTs in relation to microscopy was examined and the PCR-confirmed samples were investigated for the presence of pfhrp2 gene. A total of 113 out of 300 patients were P. falciparum positive by microscopy. Among them, 93.81% (106 out of 113) were positives by the PfHRP2 RDTs. Seven isolates were identified as false negative on the basis of the RDTs results. Only one isolate (0.9%; 1/113) potentially has pfhrp2 gene deletion. The sensitivity and specificity of PfHRP2-based RDTs were 93.81% and 100%, respectively. The results provide insights into the pfhrp2 gene deletion amongst P. falciparum population from Sudan. However, further studies with a large and systematic collection from different geographical settings across the country are needed.
    Matched MeSH terms: Molecular Diagnostic Techniques/methods*
  19. Liew PS, Teh CS, Lau YL, Thong KL
    Trop Biomed, 2014 Dec;31(4):709-20.
    PMID: 25776596 MyJurnal
    Shigellosis is a foodborne illness caused by the genus Shigella and is an important global health issue. The development of effective techniques for rapid detection of this pathogen is essential for breaking the chain of transmission. Therefore, we have developed a novel loop-mediated isothermal amplification (LAMP) assay targeting the invasion plasmid antigen H (ipaH) gene to rapidly detect Shigella species. This assay could be performed in 90 min at an optimal temperature of 64ºC, with endpoint results visualized directly. Notably, the method was found to be more sensitive than conventional PCR. Indeed, the detection limit for the LAMP assay on pure bacterial cultures was 5.9 x 10(5) CFU/ml, while PCR displayed a limit of 5.9 x 10(7) CFU/ml. In spiked lettuce samples, the sensitivity of the LAMP assay was 3.6 x 10(4) CFU/g, whereas PCR was 3.6 x 10(5) CFU/g. Overall, the assay accurately identified 32 Shigella spp. with one enteroinvasive Escherichia coli displaying positive reaction while the remaining 32 non-Shigella strains tested were negative.
    Matched MeSH terms: Molecular Diagnostic Techniques/methods*
  20. Thong KL, Teh CS, Chua KH
    Trop Biomed, 2014 Dec;31(4):689-97.
    PMID: 25776594 MyJurnal
    The present study aims to develop a system which consists of four pairs of primers that specifically detects Salmonella spp., Salmonella serovar Typhi and Salmonella serovar Paratyphi A with an internal amplification control. The system, when applied in Polymerase Chain Reaction (PCR) under specific conditions, reaction mixture and cycling temperatures produced four bands; 784 bp, 496 bp, 332 bp and 187 bp. The DNA band 784 bp is present in all Salmonella spp., while the bands of 496 bp and 332 bp are only present in S. Paratyphi A and S. Typhi, respectively. An internal amplification control as indicated by the 187 bp shows the system is working in optimum condition in all the tests. This multiplex PCR was evaluated on 241 bacterial cultures and 691 naturally contaminated samples. Overall, this multiplex PCR detection system provides a single step for simultaneous detection of DNAs of Salmonella spp., S. Typhi and S. Paratyphi A.
    Matched MeSH terms: Molecular Diagnostic Techniques/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links