Displaying all 7 publications

Abstract:
Sort:
  1. Lau YL, Ismail IB, Izati Binti Mustapa N, Lai MY, Tuan Soh TS, Hassan AH, et al.
    Am J Trop Med Hyg, 2020 Dec;103(6):2350-2352.
    PMID: 33098286 DOI: 10.4269/ajtmh.20-1079
    A simple and rapid reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for the detection of SARS-CoV-2. The RT-LAMP assay was highly specific for SARS-CoV-2 and was able to detect one copy of transcribed SARS-CoV-2 RNA within 24 minutes. Assay validation performed using 50 positive and 32 negative clinical samples showed 100% sensitivity and specificity. The RT-LAMP would be valuable for clinical diagnosis and epidemiological surveillance of SARS-CoV-2 infection in resource-limited areas as it does not require the use of sophisticated and costly equipment.
    Matched MeSH terms: Molecular Diagnostic Techniques/standards*
  2. Lai MY, Tang SN, Lau YL
    Am J Trop Med Hyg, 2021 Jun 15;105(2):375-377.
    PMID: 34129521 DOI: 10.4269/ajtmh.21-0150
    Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been spreading rapidly all over the world. In the absence of effective treatments or a vaccine, there is an urgent need to develop a more rapid and simple detection technology of COVID-19. We describe a WarmStart colorimetric reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay for the detection of SARS-CoV-2. The detection limit for this assay was 1 copy/µL SARS-CoV-2. To test the clinical sensitivity and specificity of the assay, 37 positive and 20 negative samples were used. The WarmStart colorimetric RT-LAMP had 100% sensitivity and specificity. End products were detected by direct observation, thereby eliminating the need for post-amplification processing steps. WarmStart colorimetric RT-LAMP provides an opportunity to facilitate virus detection in resource-limited settings without a sophisticated diagnostic infrastructure.
    Matched MeSH terms: Molecular Diagnostic Techniques/standards
  3. Teoh BT, Sam SS, Tan KK, Johari J, Abd-Jamil J, Hooi PS, et al.
    Sci Rep, 2016 06 09;6:27663.
    PMID: 27278716 DOI: 10.1038/srep27663
    Timely and accurate dengue diagnosis is important for differential diagnosis and immediate implementation of appropriate disease control measures. In this study, we compared the usefulness and applicability of NS1 RDT (NS1 Ag Strip) and qRT-PCR tests in complementing the IgM ELISA for dengue diagnosis on single serum specimen (n = 375). The NS1 Ag Strip and qRT-PCR showed a fair concordance (κ = 0.207, p = 0.001). While the NS1 Ag Strip showed higher positivity than qRT-PCR for acute (97.8% vs. 84.8%) and post-acute samples (94.8% vs. 71.8%) of primary infection, qRT-PCR showed higher positivity for acute (58.1% vs. 48.4%) and post-acute (50.0% vs.41.4%) samples in secondary infection. IgM ELISA showed higher positivity in samples from secondary dengue (74.2-94.8%) than in those from primary dengue (21.7-64.1%). More primary dengue samples showed positive with combined NS1 Ag Strip/IgM ELISA (99.0% vs. 92.8%) whereas more secondary samples showed positive with combined qRT-PCR/IgM ELISA (99.4% vs. 96.2%). Combined NS1 Ag Strip/IgM ELISA is a suitable combination tests for timely and accurate dengue diagnosis on single serum specimen. If complemented with qRT-PCR, combined NS1 Ag Strip/IgM ELISA would improve detection of secondary dengue samples.
    Matched MeSH terms: Molecular Diagnostic Techniques/standards
  4. Thong KL, Teh CS, Chua KH
    Trop Biomed, 2014 Dec;31(4):689-97.
    PMID: 25776594 MyJurnal
    The present study aims to develop a system which consists of four pairs of primers that specifically detects Salmonella spp., Salmonella serovar Typhi and Salmonella serovar Paratyphi A with an internal amplification control. The system, when applied in Polymerase Chain Reaction (PCR) under specific conditions, reaction mixture and cycling temperatures produced four bands; 784 bp, 496 bp, 332 bp and 187 bp. The DNA band 784 bp is present in all Salmonella spp., while the bands of 496 bp and 332 bp are only present in S. Paratyphi A and S. Typhi, respectively. An internal amplification control as indicated by the 187 bp shows the system is working in optimum condition in all the tests. This multiplex PCR was evaluated on 241 bacterial cultures and 691 naturally contaminated samples. Overall, this multiplex PCR detection system provides a single step for simultaneous detection of DNAs of Salmonella spp., S. Typhi and S. Paratyphi A.
    Matched MeSH terms: Molecular Diagnostic Techniques/standards
  5. Al-Talib H, Yean CY, Al-Khateeb A, Hasan H, Ravichandran M
    J Microbiol Immunol Infect, 2014 Dec;47(6):484-90.
    PMID: 23927820 DOI: 10.1016/j.jmii.2013.06.004
    Methicillin-resistant Staphylococcus aureus (MRSA) is a major pathogen responsible for significant numbers of nosocomial and community-acquired infections worldwide. Molecular diagnosis for MRSA nasal carriers is increasingly important for rapid detection and screening of MRSA colonization because the conventional methods are time consuming and labor intensive. However, conventional polymerase chain reaction (PCR) tests still require cold-chain storage as well as trained personnel, which makes them unsuitable for rapid high-throughput analysis. The aim of this study was to develop a thermostabilized PCR assay for MRSA in a ready-to-use form that requires no cold chain.
    Matched MeSH terms: Molecular Diagnostic Techniques/standards
  6. Tan SC, Ismail MP, Duski DR, Othman NH, Bhavaraju VM, Ankathil R
    Cancer Invest, 2017 Mar 16;35(3):163-173.
    PMID: 28301252 DOI: 10.1080/07357907.2017.1278767
    This study aimed to identify the most stably expressed reference genes from a panel of 32 candidate genes for normalization of reverse transcription-quantitative real-time polymerase chain reaction data in cancerous and non-cancerous tissues of human uterine cervix. Overall, PUM1, YWHAZ, and RPLP0 were identified as the most stably expressed genes in paired cancerous and non-cancerous tissues. The results were further stratified by the state of malignancy of the tissues, histopathological type of the cancer, and the human papillomavirus-type.
    Matched MeSH terms: Molecular Diagnostic Techniques/standards*
  7. Chew CH, Lim YA, Lee PC, Mahmud R, Chua KH
    J Clin Microbiol, 2012 Dec;50(12):4012-9.
    PMID: 23035191 DOI: 10.1128/JCM.06454-11
    Malaria remains one of the major killers of humankind and persists to threaten the lives of more than one-third of the world's population. Given that human malaria can now be caused by five species of Plasmodium, i.e., Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale, and the recently included Plasmodium knowlesi, there is a critical need not only to augment global health efforts in malaria control but also, more importantly, to develop a rapid, accurate, species-sensitive/species-specific, and economically effective diagnostic method for malaria caused by these five species. Therefore, in the present study, a straightforward single-step hexaplex PCR system targeting five human Plasmodium 18S small-subunit rRNAs (ssu rRNAs) was designed, and the system successfully detected all five human malaria parasites. In addition, this system enables the differentiation of single infection as well as mixed infections up to the two-species level. This assay was validated with 50 randomly blinded test and 184 clinical samples suspected to indicate malaria. This hexaplex PCR system is not only an ideal alternative for routine malaria diagnosis in laboratories with conventional PCR machines but also adds value to diagnoses when there is a lack of an experienced microscopist or/and when the parasite morphology is confusing. Indeed, this system will definitely enhance the accuracy and accelerate the speed in the diagnosis of malaria, as well as improve the efficacy of malaria treatment and control, in addition to providing reliable data from epidemiological surveillance studies.
    Matched MeSH terms: Molecular Diagnostic Techniques/standards
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links