MATERIALS AND METHODS: In this study, 38 samples of patients undergoing radical prostatectomy were used. Among 38 samples; 20 patients were with prostatic adenocarcinoma, 18 patients were with high-grade prostatic intraepithelial neoplasia and adjacent normal prostatic tissue areas. The immunolocalisation of apelin and apelin receptor in these tissues were determined immunohistochemically.
RESULTS: Apelin and apelin receptor expressions were higher in prostatic adenocarcinoma than normal prostate tissue and high-grade prostatic intraepithelial neoplasia. Apelin receptor expression was also increased in high-grade prostatic intraepithelial neoplasia compared to normal tissue.
CONCLUSION: Apelin and apelin receptor are increase in the process of prostate carcinogenesis. This increase may adversely affect the clinical course of prostate cancer patients by stimulating angiogenesis, which is important for invasion and metastasis in prostate cancer.
METHODS: The study follows a systematic review approach that has been implemented to analyze the qualitative published data from previous studies. Studies related with the trials of angiogenesis and bevacizumab were selected in the review.
RESULTS: In general, the management of gynecological cancers include chemotherapy, surgery and radiation therapy. Results suggest bevacizumab as an effective treatment modality for cervical and several other cancers. Overall, bevacizumab showed promising results in improving the overall survival rate of gynecological cancer patients through the combination of bevacizumab with other chemotherapeutic agents.
CONCLUSION: Bevacizumab possess less documented adverse effects when compared to other chemotherapeutic agents. The manifestation and severity of adverse effects reported varied according to the chemotherapeutic agent(s) that were used with bevacizumab in combination therapy. Overall, bevacizumab effectively improved the survival rate in patients with several gynaecological cancers.
RESULTS: ARG2 promotes tumorigenesis by increasing cellular proliferation, migration, invasion and vasculogenic mimicry in GBM cells, at least in part due to overexpression of MMP2/9. The nor-NOHA significantly reduced migration and tube formation of ARG2-overexpressing cells. HCMV immediate-early proteins (IE1/2) or its downstream pathways upregulated the expression of ARG2 in U-251 MG cells. Immunostaining of GBM tissue sections confirmed the overexpression of ARG2, consistent with data from subsets of Gene Expression Omnibus. Moreover, higher levels of ARG2 expression tended to be associated with poorer survival in GBM patient by analyzing data from TCGA.
METHODS: The role of ARG2 in tumorigenesis was examined by proliferation-, migration-, invasion-, wound healing- and tube formation assays using an ARG2-overexpressing cell line and ARG inhibitor, N (omega)-hydroxy-nor-L-arginine (nor-NOHA) and siRNA against ARG2 coupled with functional assays measuring MMP2/9 activity, VEGF levels and nitric oxide synthase activity. Association between HCMV and ARG2 were examined in vitro with 3 different GBM cell lines, and ex vivo with immunostaining on GBM tissue sections. The viral mechanism mediating ARG2 induction was examined by siRNA approach. Correlation between ARG2 expression and patient survival was extrapolated from bioinformatics analysis on data from The Cancer Genome Atlas (TCGA).
CONCLUSIONS: ARG2 promotes tumorigenesis, and HCMV may contribute to GBM pathogenesis by upregulating ARG2.