Displaying publications 1 - 20 of 160 in total

Abstract:
Sort:
  1. Wahab HA, Noordin MY, Izman S, Kurniawan D
    ScientificWorldJournal, 2013;2013:631936.
    PMID: 23997678 DOI: 10.1155/2013/631936
    Electroplated nickel coating on cemented carbide is a potential pretreatment technique for providing an interlayer prior to diamond deposition on the hard metal substrate. The electroplated nickel coating is expected to be of high quality, for example, indicated by having adequate thickness and uniformity. Electroplating parameters should be set accordingly for this purpose. In this study, the gap distances between the electrodes and duration of electroplating process are the investigated variables. Their effect on the coating thickness and uniformity was analyzed and quantified using design of experiment. The nickel deposition was carried out by electroplating in a standard Watt's solution keeping other plating parameters (current: 0.1 Amp, electric potential: 1.0 V, and pH: 3.5) constant. The gap distance between anode and cathode varied at 5, 10, and 15 mm, while the plating time was 10, 20, and 30 minutes. Coating thickness was found to be proportional to the plating time and inversely proportional to the electrode gap distance, while the uniformity tends to improve at a large electrode gap. Empirical models of both coating thickness and uniformity were developed within the ranges of the gap distance and plating time settings, and an optimized solution was determined using these models.
    Matched MeSH terms: Nickel/chemistry*
  2. Gurdeep Singh HK, Yusup S, Quitain AT, Abdullah B, Ameen M, Sasaki M, et al.
    Environ Res, 2020 07;186:109616.
    PMID: 32668556 DOI: 10.1016/j.envres.2020.109616
    Catalytic cracking of vegetable oil mainly processed over zeolites, and among all the zeolites particularly HZMS-5 has been investigated on wide range for renewable and clean gasoline production from various plant oils. Despite the fact that HZSM-5 offers a higher conversion degree and boost aromatics yield, the isomerate yield reduces due to high cracking activity and shape selectivity of HZSM-5. Hence, to overcome these problems, in this study the transition metals, such as nickel and copper doped over HZSM-5 were tested for its efficiencies to improve the isoparaffin compounds. The catalysts were screened with linoleic acid in a catalytic cracking reaction conducted at 450 ᵒC for 90 min in an atmospheric condition in batch reactor. Then, the gasoline composition of the organic liquid product (OLP) was analysed in terms of paraffin, isoparaffin, olefin, naphthenes and aromatics (PIONA). The results showed that Cu/ZSM-5 produced the highest liquid yield of 79.1%, at the same time reduced the production of gas and coke to 18.8% and 0.7%. Furthermore, the desired isoparaffin composition in biogasoline increased from 1.6% to 6.8% and at the same time reduced the oxygenated and aromatic compounds to 15.4% and 59.7%, respectively. The linoleic acid as model compound of rubber seed oil, in the catalytic cracking reaction provides a clearer understanding of the process. Besides, the water gas shift (WGS) reaction in catalytic cracking reaction provides insitu hydrogen production to saturate the branched olefin into the desired isoparaffin and the aromatics into naphthenes.
    Matched MeSH terms: Nickel*
  3. van der Ent A, Echevarria G, Nkrumah PN, Erskine PD
    Ann Bot, 2020 10 30;126(6):1017-1027.
    PMID: 32597938 DOI: 10.1093/aob/mcaa119
    BACKGROUND AND AIMS: The aim of this study was to test the frequency distributions of foliar elements from a large dataset from Kinabalu Park (Sabah, Malaysia) for departure from unimodality, indicative of a distinct ecophysiological response associated with hyperaccumulation.

    METHODS: We collected foliar samples (n = 1533) comprising 90 families, 198 genera and 495 plant species from ultramafic soils, further foliar samples (n = 177) comprising 45 families, 80 genera and 120 species from non-ultramafic soils and corresponding soil samples (n = 393 from ultramafic soils and n = 66 from non-ultramafic soils) from Kinabalu Park (Sabah, Malaysia). The data were geographically (Kinabalu Park) and edaphically (ultramafic soils) constrained. The inclusion of a relatively high proportion (approx. 14 %) of samples from hyperaccumulator species [with foliar concentrations of aluminium and nickel (Ni) >1000 μg g-1, cobalt, copper, chromium and zinc >300 μg g-1 or manganese (Mn) >10 mg g-1] allowed for hypothesis testing.

    KEY RESULTS: Frequency distribution graphs for most elements [calcium (Ca), magnesium (Mg) and phosphorus (P)] were unimodal, although some were skewed left (Mg and Mn). The Ni frequency distribution was bimodal and the separation point for the two modes was between 250 and 850 μg g-1.

    CONCLUSIONS: Accounting for statistical probability, the established empirical threshold value (>1000 μg g-1) remains appropriate. The two discrete modes for Ni indicate ecophysiologically distinct behaviour in plants growing in similar soils. This response is in contrast to Mn, which forms the tail of a continuous (approximately log-normal) distribution, suggestive of an extension of normal physiological processes.

    Matched MeSH terms: Nickel*
  4. van der Ent A, Mulligan D
    J Chem Ecol, 2015 Apr;41(4):396-408.
    PMID: 25921447 DOI: 10.1007/s10886-015-0573-y
    Information about multi-elemental concentrations in different plant parts of tropical Ni hyperaccumulator species has the potential to provide insight into their unusual metabolism relative to a range of essential and non-essential elements, but this information is scant in the literature. As Ni hyperaccumulation, and possibly co-accumulation of other toxic elements, has been hypothesized to provide herbivore (insect) protection, there is a need to quantify a range of these elements in plant tissues and transport fluids to at least verify the possibility of this explanation. In this study, multiple elements were analyzed in a range of different plant parts and transport fluids from Ni hyperaccumulator species collected from Sabah (Malaysia). The results show preferential accumulation of Ni in leaves over woody parts, but the highest concentrations were found in the phloem tissue (up to 7.9 % in Rinorea bengalensis) and phloem sap (up to 16.9 % in Phyllanthus balgooyi), visible by a bright green coloration in the field fresh material. The amount of Ni contained in one mature R. bengalensis tree was calculated at 4.77 kg. The high Ni concentration in the flowers of Phyllanthus securinegoides could affect insect floral visitors and pollination. High concentrations of Ni in the seeds of this species also could supply the seedling with Ni and aid in herbivory protection during the first stages of development. Foliar Ca and Ni in P. cf. securinegoides and R. bengalensis are positively correlated. Low accumulation of Ca is desirable for phytomining but concentrations of Ca are high in most Ni hyperaccumulators examined, and this could have consequences for the economic viability of Ni extraction from bio ore if these species were to be used as 'metal crops'.
    Matched MeSH terms: Nickel/metabolism*
  5. van der Ent A, Callahan DL, Noller BN, Mesjasz-Przybylowicz J, Przybylowicz WJ, Barnabas A, et al.
    Sci Rep, 2017 Feb 16;7:41861.
    PMID: 28205587 DOI: 10.1038/srep41861
    The extraordinary level of accumulation of nickel (Ni) in hyperaccumulator plants is a consequence of specific metal sequestering and transport mechanisms, and knowledge of these processes is critical for advancing an understanding of transition element metabolic regulation in these plants. The Ni biopathways were elucidated in three plant species, Phyllanthus balgooyi, Phyllanthus securinegioides (Phyllanthaceae) and Rinorea bengalensis (Violaceae), that occur in Sabah (Malaysia) on the Island of Borneo. This study showed that Ni is mainly concentrated in the phloem in roots and stems (up to 16.9% Ni in phloem sap in Phyllanthus balgooyi) in all three species. However, the species differ in their leaves - in P. balgooyi the highest Ni concentration is in the phloem, but in P. securinegioides and R. bengalensis in the epidermis and in the spongy mesophyll (R. bengalensis). The chemical speciation of Ni2+ does not substantially differ between the species nor between the plant tissues and transport fluids, and is unambiguously associated with citrate. This study combines ion microbeam (PIXE and RBS) and metabolomics techniques (GC-MS, LC-MS) with synchrotron methods (XAS) to overcome the drawbacks of the individual techniques to quantitatively determine Ni distribution and Ni2+ chemical speciation in hyperaccumulator plants.
    Matched MeSH terms: Nickel/analysis; Nickel/metabolism*
  6. Tan FH, Ng JF, Mohamed Alitheen NB, Muhamad A, Yong CY, Lee KW
    J Virol Methods, 2023 Sep;319:114771.
    PMID: 37437780 DOI: 10.1016/j.jviromet.2023.114771
    Virus-like particles (VLPs) is one of the most favourable subjects of study, especially in the field of nanobiotechnology and vaccine development because they possess good immunogenicity and self-adjuvant properties. Conventionally, VLPs can be tagged and purified using affinity chromatography or density gradient ultracentrifugation which is costly and time-consuming. Turnip yellow mosaic virus (TYMV) is a plant virus, where expression of the viral coat protein (TYMVc) in Escherichia coli (E. coli) has been shown to form VLP. In this study, we report a non-chromatographic method for VLP purification using C-terminally His-tagged TYMVc (TYMVcHis6) as a protein model. Firstly, the TYMVcHis6 was cloned and expressed in E. coli. Upon clarification of cell lysate, nickel (II) chloride [NiCl2; 15 µM or equivalent to 0.0000194% (w/v)] was added to precipitate TYMVcHis6. Following centrifugation, the pellet was resuspended in buffer containing 1 mM EDTA to chelate Ni2+, which is then removed via dialysis. A total of 50% of TYMVcHis6 was successfully recovered with purity above 0.90. Later, the purified TYMVcHis6 was analysed with sucrose density ultracentrifugation, dynamic light scattering (DLS), and transmission electron microscopy (TEM) to confirm VLP formation, which is comparable to TYMVcHis6 purified using the standard immobilized metal affinity chromatography (IMAC) column. As the current method omitted the need for IMAC column and beads while significantly reducing the time needed for column washing, nickel affinity precipitation represents a novel method for the purification of VLPs displaying poly-histidine tags (His-tags).
    Matched MeSH terms: Nickel/metabolism; Nickel/chemistry
  7. Lee XJ, Lee LY, Foo LP, Tan KW, Hassell DG
    J Environ Sci (China), 2012;24(9):1559-68.
    PMID: 23520862
    The present work covers the preparation of carbon-based nanosorbents by ethylene decomposition on stainless steel mesh without the use of external catalyst for the treatment of water containing nickel ions (Ni2+). The reaction temperature was varied from 650 to 850 degrees C, while reaction time and ethylene to nitrogen flow ratio were maintained at 30 min and 1:1 cm3/min, respectively. Results show that nanosorbents synthesised at a reaction temperature of 650 degrees C had the smallest average diameter (75 nm), largest BET surface area (68.95 m2/g) and least amount of impurity (0.98 wt.% Fe). A series of batch-sorption tests were performed to evaluate the effects of initial pH, initial metal concentration and contact time on Ni2+ removal by the nanosorbents. The equilibrium data fitted well to Freundlich isotherm. The kinetic data were best correlated to a pseudo second-order model indicating that the process was of chemisorption type. Further analysis by the Boyd kinetic model revealed that boundary layer diffusion was the controlling step. This primary study suggests that the prepared material with Freundlich constants compared well with those in the literature, is a promising sorbent for the sequestration of Ni2+ in aqueous solutions.
    Matched MeSH terms: Nickel/chemistry*
  8. Mohamad Dzol MAA, Balasundram V, Shameli K, Ibrahim N, Manan ZA, Isha R
    J Environ Manage, 2022 Dec 15;324:116392.
    PMID: 36208512 DOI: 10.1016/j.jenvman.2022.116392
    The main objective of the current work is to investigate the effect of nickel-waste chicken eggshell modified Hydrogen exchanged Zeolite Socony Mobil-5 (Ni-WCE/HZSM-5) on pyrolysis of high-density polyethylene (HDPE). Ni-WCE/HZSM-5 was synthesized via the impregnation incipient wetness (IWI) method with Ni and WCE mass loading of 4 and 12 wt% respectively. HZSM-5, CaO, WCE, WCE/HZSM-5, and Ni/HZSM-5 were prepared for comparison purposes with Ni-WCE/HZSM-5. All the synthesized catalysts were characterized for phase analysis, metal loading, surface morphology, and textural properties. The impregnation of nickel and WCE had significantly affected the original framework of HZSM-5, where the crystallinity percentage and average crystal size of HZSM-5 dropped to 44.97% and increased to 47.90 nm respectively. The surface morphology of HZSM-5 has drastically changed from a cubic-like shape into a spider web-like surface after the impregnation of WCE. The BET surface area of HZSM-5 has been lowered due to the impregnation of nickel and WCE, but the total pore volume has increased greatly from 0.2291 cm3/g to 0.2621 cm3/g. The catalyst performance was investigated in the pyrolysis of HDPE via a fixed bed reactor and the pyrolysis oil was further analysed to evaluate the distribution of C6 to C9> hydrocarbons. Among the tested catalytic samples, the highest pyrolysis oil yield was achieved by WCE (80%) followed by CaO (78%), WCE/HZSM-5 (63%), HZSM-5 (61%), Ni/HZSM-5 (44%) and Ni-WCE/HZSM-5 (50%). For hydrocarbon distribution in pyrolysis oil, the Ni/HZSM-5 produced the highest of total C6 and C7 hydrocarbons at 12% and 27% respectively followed by WCE/HZSM-5 (4% and 20%), non-catalytic (5% and 13%), Ni-WCE/HZSM-5 (0% and 15%), WCE (0% and 10%), HZSM-5 (0% and 6%) and CaO (0% and 0%).
    Matched MeSH terms: Nickel/chemistry
  9. Javad Sajjadi Shourije SM, Dehghan P, Bahrololoom ME, Cobley AJ, Vitry V, Pourian Azar GT, et al.
    Chemosphere, 2023 Mar;317:137829.
    PMID: 36640980 DOI: 10.1016/j.chemosphere.2023.137829
    In this study, fish scales (Pomadasys kaakan's scales) were used as new biosorbent for removing Ni2+ and Cu2+ ions from wastewater. The effects of electric and magnetic fields on the absorption efficiency were also investigated. The effects of sorbent content, ion concentration, contact time, pH, electric field (EF), and magnetic field (MF) on absorption efficiency were assertained. In addition, the isotherm of absorption was studied in this work. This study revealed that electric field and magnetic field have significant effects on the absorption efficiency of ions from wastewater. An increase in the electric field enhanced the removal percentage of the ions and accelerated the absorption process by up to 40% in comparison with the same condition without an electric field or a magnetic field. By increasing contact time from 10 to 120 min, the removal of Ni2+ ions was increased from 1% to 40% and for Cu2+ ions, the removal increased from 20% to almost 95%, respectively. In addition, increasing pH, ion concentration and scales dose increased removal percentage effectively. The results indicated that using fish scales for Cu2+ ions absorption is ideal due to the very high removal percentage (approximately 95%) without using either an electric or magnetic field.
    Matched MeSH terms: Nickel/chemistry
  10. van der Ent A, Mak R, de Jonge MD, Harris HH
    Sci Rep, 2018 Jun 26;8(1):9683.
    PMID: 29946061 DOI: 10.1038/s41598-018-26891-7
    Hyperaccumulation is generally highly specific for a single element, for example nickel (Ni). The recently-discovered hyperaccumulator Glochidion cf. sericeum (Phyllanthaceae) from Malaysia is unusual in that it simultaneously accumulates nickel and cobalt (Co) with up to 1500 μg g-1 foliar of both elements. We set out to determine whether distribution and associated ligands for Ni and Co complexation differ in this species. We postulated that Co hyperaccumulation coincides with Ni hyperaccumulation operating on similar physiological pathways. However, the ostensibly lower tolerance for Co at the cellular level results in the exudation of Co on the leaf surface in the form of lesions. The formation of such lesions is akin to phytotoxicity responses described for manganese (Mn). Hence, in contrast to Ni, which is stored principally inside the foliar epidermal cells, the accumulation response to Co consists of an extracellular mechanism. The chemical speciation of Ni and Co, in terms of the coordinating ligands involved and principal oxidation state, is similar and associated with carboxylic acids (citrate for Ni and tartrate or malate for Co) and the hydrated metal ion. Some oxidation to Co3+, presumably on the surface of leaves after exudation, was observed.
    Matched MeSH terms: Nickel/metabolism*
  11. Tek PPY, Ng CC
    Environ Monit Assess, 2024 Mar 19;196(4):382.
    PMID: 38502262 DOI: 10.1007/s10661-024-12508-2
    The accumulation of potentially toxic elements (PTEs) has raised public awareness due to harmful contamination to both human and marine creatures. This study was designed to determine the concentration of copper (Cu), zinc (Zn), cadmium (Cd), and nickel (Ni) in the intestine, kidney, muscle, gill, and liver tissues of local commercial edible fish, fourfinger threadfin (Eleutheronema tetradactylum), and black pomfret (Parastromateus niger) collected from Morib (M) and Kuala Selangor (KS). Among the studied PTEs, Cu and Zn were essential elements to regulate body metabolism with certain dosages required while Cd and Ni were considered as non-essential elements that posed chronic and carcinogenic risk. The concentration of PTEs in fish tissue samples was analyzed using flame atomic absorption spectrometry (F-AAS). By comparing the concentration of PTEs in fish tissues as a bioindicator, the environmental risk of Morib was more serious than Kuala Selangor because both fish species collected from Morib resulted in a higher PTEs concentration. For an average 62 kg adult with a fish ingestion rate (FIR) of 0.16 kg/person/day in Malaysia, the estimated weekly intake (EWI) of Cd from the consumption of E. tetradactylum (M: 0.0135 mg/kg; KS: 0.0134 mg/kg) and P. niger (M: 0.0140 mg/kg; KS: 0.0132 mg/kg) had exceeded the provisional tolerable weekly intake (Cd: 0.007 mg/kg) established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) and oral reference dose (ORD) values of Cd (0.001 mg/kg/day) as provided by the United States Environmental Protection Agency (USEPA) regional screening level, thus it posed chronic risks for daily basis consumption. Besides, the value of the carcinogenic risk of Cd (0.7-3 to 0.8-3) and Ni (0.5-3 to 0.6-3) were in between the acceptable range (10-6 to 10-4) of the health index that indicates a relatively low possibility cancer occurrence to the consumers in both Morib and Kuala Selangor. This study recommended FIR to be 0.80 kg/person/day to reduce the possibility of posing chronic and carcinogenic risks while at the same time obtaining the essential nutrients from the fish.
    Matched MeSH terms: Nickel/analysis
  12. N W N A M, R A, N H KA, E S, M A A K, M H I, et al.
    J Biomed Mater Res B Appl Biomater, 2024 Jan;112(1):e35306.
    PMID: 37522375 DOI: 10.1002/jbm.b.35306
    Porous NiTi (pNiTi) is a promising biomaterial for functional long-term implantation that has been produced using various manufacturing techniques and tested for biocompatibility. pNiTi produced using a more recent technology of Metal Injection Molding (MIM) has shown better physical and mechanical properties than those produced by earlier manufacturing methods, but its biocompatibility has yet to be determined. Hence, extracts from pNiTi dental implants produced by MIM were tested for cytotoxicity and genotoxicity in this work. Its toxicity was evaluated at the cellular and in vitro levels using elution and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays. Short-term testing revealed that pNiTi extract was cytocompatible with L-929 fibroblast and V79-4 lung cells, with no cell lysis or reactivity observed, respectively (USP grade 0). Following exposure to varied extract concentrations, good cell viability was observed where the lowest concentration showed the highest optical density (OD) and cell viability (2.968 ± 0.117 and 94%, respectively), and the highest concentration had the least OD and cell viability (2.251 ± 0.054 and 71%, respectively). pNiTi extracts demonstrated genocompatibility in two independent assays: mutagenic potential using a bacterial reverse mutation test and a clastogenic effect on chromosomes using the micronucleus test. Similar to the negative control reactions, there was no significant increase in revertant colonies following exposure to 100% pNiTi extract with and without metabolic activation (p = .00). No DNA clastogenic activity was caused by pNiTi at varied extract concentrations as compared to the negative control when tested with and without metabolic activation (p = .00). As a result, both cytotoxic and genotoxic investigations have confirmed that pNiTi dental implants utilizing the MIM process are cytocompatible and genocompatible in the short term, according to the International Standard, ISO 10993 - Parts 3, 5, and 33.
    Matched MeSH terms: Nickel*
  13. Ghaemi F, Abdullah LC, Tahir P
    Polymers (Basel), 2016 Nov 09;8(11).
    PMID: 30974671 DOI: 10.3390/polym8110381
    This paper focuses on the synthesis and mechanism of carbon nanospheres (CNS) coated with few- and multi-layered graphene (FLG, MLG). The graphitic carbon encapsulates the core/shell structure of the Ni/NiO nanoparticles via the chemical vapor deposition (CVD) method. The application of the resulting CNS and hybrids of CNS-FLG and CNS-MLG as reinforcement nanofillers in a polypropylene (PP) matrix were studied from the aspects of mechanical and thermal characteristics. In this research, to synthesize carbon nanostructures, nickel nitrate hexahydrate (Ni(NO₃)₂·6H₂O) and acetylene (C₂H₂) were used as the catalyst source and carbon source, respectively. Besides, the morphology, structure and graphitization of the resulting carbon nanostructures were investigated. On the other hand, the mechanisms of CNS growth and the synthesis of graphene sheets on the CNS surface were studied. Finally, the mechanical and thermal properties of the CNS/PP, CNS-FLG/PP, and CNS-MLG/PP composites were analyzed by applying tensile test and thermogravimetric analysis (TGA), respectively.
    Matched MeSH terms: Nickel
  14. Dawood S, Koyande AK, Ahmad M, Mubashir M, Asif S, Klemeš JJ, et al.
    Chemosphere, 2021 Sep;278:130469.
    PMID: 33839393 DOI: 10.1016/j.chemosphere.2021.130469
    The present study defines a novel green method for the synthesis of the nickel oxide nanocatalyst by using an aqueous latex extract of the Ficus elastic. The catalyst was examined for the conversion of novel Brachychiton populneus seed oil (BPSO) into biodiesel. The Brachychiton populneus seeds have a higher oil content (41 wt%) and free fatty acid value (3.8 mg KOH/g). The synthesised green nanocatalyst was examined by the Fourier transform infrared (FT-IR) spectroscopy, energy dispersive X-Ray (EDX) spectroscopy, X-Ray diffraction (XRD) spectroscopy and scanning electron microscopy (SEM). The obtained results show that the synthesised green nanocatalyst was 22-26 nm in diameter and spherical-cubic in shape with a higher rate of catalytic efficiency. It was utilised further for the conversion of BPSO into biofuel. Due to the high free fatty acid value, the biodiesel was synthesised by the two-step process, i.e., pretreatment of the BPSO by means of acid esterification and then followed by the transesterification reaction. The acidic catalyst (H2SO4) was used for the pretreatment of BPSO. The optimum condition for the transesterification of the pretreated BPSO was 1:9 of oil-methanol molar ratio, 2.5 wt % of prepared nanocatalyst concentration and 85 °C of reaction temperature corresponding to the highest biodiesel yield of 97.5 wt%. The synthesised biodiesel was analysed by the FT-IR and GC-MS technique to determine the chemical composition of fatty acid methyl esters. Fuel properties of Brachychiton populneus seed oil biodiesel (BPSOB) were also examined, compared, and it falls in the prescribed range of ASTM standards.
    Matched MeSH terms: Nickel
  15. Muhammad Fauzinizam Razali, Abdus Samad Mahmud
    MyJurnal
    Introduction: Most patients with malocclusion are given orthodontic leveling therapy with the aim of reducing the vertical discrepancy between teeth. This computational study aims to evaluate the degree of deformation of su- perelastic NiTi arch wire upon bending at different deflections in a bracket system. Methods: A three-dimensional finite-element model of a wire-bracket system was developed to simulate the bending behavior of superelastic NiTi arch wire in three-brackets configuration. A superelastic subroutine was integrated in the model to anticipate the superelastic behavior of the arch wire. The mid span of the arch wire was loaded to different extent of deflections, ranging from 1.0 to 4.0 mm. The mechanical deformation of the arch wires was accessed from three parameters, in specific the unloading force, the bending stress and the martensite fraction. Results: The superelastic wire deflected at 4.0 mm yielded smaller unloading force than the wire bent at 1.0 mm. The bending stress was highly localized at the wire curvature, with the stress magnitude increased from 465 MPa at 1.0 mm to 951 MPa at 4.0 mm deflection. The martensite volume consistently increased throughout the bending, with a fully transformed martensite was ob- served as early as 2.0 mm of deflection. The magnitude of bending stress and the volume of fully transformed mar- tensite increased gradually in relation to the wire deflection. Conclusion: The wire-bracket system induced localize wire deformation, hindering complete utilization of superelasticity during orthodontic treatment.
    Matched MeSH terms: Nickel
  16. Ramu AG, Umar A, Ibrahim AA, Algadi H, Ibrahim YSA, Wang Y, et al.
    Environ Res, 2021 09;200:111366.
    PMID: 34029547 DOI: 10.1016/j.envres.2021.111366
    In the present research work, 2D-Porous NiO decorated graphene nanocomposite was synthesized by hydrothermal method to monitored the concentration of epinephrine (EPI). The morphology (SEM and TEM) results confirmed 2D-Porous NiO nanoparticles firmly attached over graphene nanosheets. FTIR and XPS analysis confirmed the formation of nickel oxide formation and complete reduction of GO to rGO. The electrochemical activity of the proposed NiO-rGO/GCE modified electrode on epinephrine was analyzed by simple cyclic voltammetry technique. The proposed low cost NiO-rGO/GCE modified electrode showed excellent catalytic activity over GCE and rGO/GCE electrodes. Due to its high conductivity and charge transfer ability of the NiO-rGO/GCE modified electrode exhibited high sensitivity of EPI at optimized conditions. The anodic peak current of the EPI linearly increases with increasing the concertation of EPI. A wide linear range (50 μM-1000 μM) was achieved with high correlation coefficient (R2 = 0.9986) and the limit of detection (LOD) of NiO-rGO/GCE modified electrode was calculated to be 10 μM. NiO-rGO/GCE electrode showed good stability and repeatability towards the EPI oxidation. Mainly, the proposed NiO-rGO/GCE modified electrode showed good sensitivity of EPI in the human biological fluid with high recovery percentage. The low cost, NiO-rGO/GCE electrode could be the promising sensor electrode for the detection of Epinephrine in the real samples.
    Matched MeSH terms: Nickel
  17. Shariat BS, Meng Q, Mahmud AS, Wu Z, Bakhtiari R, Zhang J, et al.
    Data Brief, 2017 Aug;13:562-568.
    PMID: 28706965 DOI: 10.1016/j.dib.2017.06.017
    Functionally graded NiTi structures benefit from the combination of the smart properties of NiTi and those of functionally graded structures. This article provides experimental data for thermomechanical deformation behaviour of microstructurally graded, compositionally graded and geometrically graded NiTi alloy components, related to the research article entitled "Functionally graded shape memory alloys: design, fabrication and experimental evaluation" (Shariat et al., 2017) [1]. Stress-strain variation of microstructurally graded NiTi wires is presented at different heat treatment conditions and testing temperatures. The complex 4-way shape memory behaviour of a compositionally graded NiTi strip during one complete thermal cycle is demonstrated. The effects of geometrical design on pseudoelastic behaviour of geometrically graded NiTi plates over tensile loading cycles are presented on the stress-strain diagrams.
    Matched MeSH terms: Nickel
  18. Zhou H, Saad JM, Li Q, Xu Y
    Waste Manag, 2020 Mar 01;104:42-50.
    PMID: 31962216 DOI: 10.1016/j.wasman.2020.01.017
    Recovery of chemicals and fuels from unrecyclable waste plastics at high temperatures (>800 °C) has received much research attention. Thermodynamic equilibrium calculation suggests that it is possible to perform the low-temperature steam reforming of polystyrene. In this study, we synthesized a Ni-Fe bimetallic catalyst for the low-temperature (500 °C) steam reforming of polystyrene. XRD characterization showed that Ni-Fe alloy was formed in the catalyst. Compared to conventional Ni catalysts, the Ni-Fe bimetallic catalysts can significantly increase the H2/CO ratio in the produced gas with high gas production yield. The online gas analysis revealed that H2, CO, and CO2 were formed in the same temperature range. H2 and CO were formed simultaneously through steam reforming reactions, and CO2 was formed through water-gas shift reaction. New morphologies of carbon deposition on the catalyst surface were found, suggesting that wax could be condensed on the catalyst surface at a low temperature.
    Matched MeSH terms: Nickel
  19. Khairudin NF, Mohammadi M, Mohamed AR
    Environ Sci Pollut Res Int, 2021 Jun;28(23):29157-29176.
    PMID: 33550559 DOI: 10.1007/s11356-021-12794-0
    This study deals with the development of alumina-supported cobalt (Co/Al2O3) catalysts with remarkable performance in dry reforming of methane (DRM) and least carbon deposition. The influence of Co content, calcination, and reduction temperatures on the physicochemical attributes and catalyst activity of the developed catalysts was extensively studied. For this purpose, several characterization techniques including ICP-MS, H2 pulse chemisorption, HRTEM, H2-TPR, N2 adsorption desorption, and TGA were implemented, and the properties of the developed catalysts were carefully analyzed. The impact of reaction temperature, feed gas ratio, and gas hourly space velocity (GHSV) on the reactants conversion and products yield was investigated. Use of 10%Co/Al2O3 catalyst, calcined at 500°C and reduced under H2 at 900°C in DRM reaction at 850°C, CH4/CO2 ratio of 1:1, and GHSV of 6 L.g-1.h-1 resulted in a remarkable catalytic activity and sustainable performance in long-term operation where great CO2 (96%) and CH4 (98%) conversions and high H2 (83%) and CO (91%) yields with a negligible carbon deposition (3 wt%) were attained in 100-h on-stream reaction. The good performance of the developed catalyst in DRM reaction was attributed to the small Co particle size with well-dispersion on the alumina support which increased the catalytic activity and also the strong metal-support interaction which inhibited any serious metal sintering and enhanced the catalyst stability.
    Matched MeSH terms: Nickel
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links