METHODS: Patients with stable COPD (n=446) and nondiseased controls (n=51) were prospectively recruited across three countries (Singapore, Malaysia and Hong Kong) and screened against a comprehensive allergen panel including house dust mites, pollens, cockroach and fungi. For the first time, using a metagenomics approach, we assessed outdoor and indoor environmental allergen exposure in COPD. We identified key fungi in outdoor air and developed specific-IgE assays against the top culturable fungi, linking sensitisation responses to COPD outcomes. Indoor air and surface allergens were prospectively evaluated by metagenomics in the homes of 11 COPD patients and linked to clinical outcome.
RESULTS: High frequencies of sensitisation to a broad range of allergens occur in COPD. Fungal sensitisation associates with frequent exacerbations, and unsupervised clustering reveals a "highly sensitised fungal predominant" subgroup demonstrating significant symptomatology, frequent exacerbations and poor lung function. Outdoor and indoor environments serve as important reservoirs of fungal allergen exposure in COPD and promote a sensitisation response to outdoor air fungi. Indoor (home) environments with high fungal allergens associate with greater COPD symptoms and poorer lung function, illustrating the importance of environmental exposures on clinical outcomes in COPD.
CONCLUSION: Fungal sensitisation is prevalent in COPD and associates with frequent exacerbations representing a potential treatable trait. Outdoor and indoor (home) environments represent a key source of fungal allergen exposure, amenable to intervention, in "sensitised" COPD.
METHODS AND ANALYSIS: Scopus, PubMed, Cochrane, Web of Science and ProQuest will be searched from database inception to February 2023 using PEO search strategy (Population: adults with COPD; Exposure: inflammatory markers; Outcomes: lung function, muscle force and exercise capacity). Four reviewers working in pairs will independently screen articles for eligibility and extract data that fulfilled the inclusion criteria. Depending on the design of the included studies, either Cochrane risk-of-bias version 2 or the Newcastle-Ottawa Scale tools will be used to rate the methodological quality of the included studies. Effect sizes reported in each individual study will be standardised to Cohen's d and a random effects model will be used to calculate the pooled effect size for the association.
ETHICS AND DISSEMINATION: Ethical approval is unnecessary as this study will only use publicly available data. The findings will be disseminated through publication in peer-reviewed journals and conferences.
PROSPERO REGISTRATION NUMBER: CRD42022284446.
METHODS: We report the largest multicentre evaluation of the COPD airway mycobiome to date, including participants from Asia (Singapore and Malaysia) and the UK (Scotland) when stable (n=337) and during exacerbations (n=66) as well as nondiseased (healthy) controls (n=47). Longitudinal mycobiome analysis was performed during and following COPD exacerbations (n=34), and examined in terms of exacerbation frequency, 2-year mortality and occurrence of serum specific IgE (sIgE) against selected fungi.
RESULTS: A distinct mycobiome profile is observed in COPD compared with controls as evidenced by increased α-diversity (Shannon index; p<0.001). Significant airway mycobiome differences, including greater interfungal interaction (by co-occurrence), characterise very frequent COPD exacerbators (three or more exacerbations per year) (permutational multivariate ANOVA; adjusted p<0.001). Longitudinal analyses during exacerbations and following treatment with antibiotics and corticosteroids did not reveal any significant change in airway mycobiome profile. Unsupervised clustering resulted in two clinically distinct COPD groups: one with increased symptoms (COPD Assessment Test score) and Saccharomyces dominance, and another with very frequent exacerbations and higher mortality characterised by Aspergillus, Curvularia and Penicillium with a concomitant increase in serum sIgE levels against the same fungi. During acute exacerbations of COPD, lower fungal diversity associates with higher 2-year mortality.
CONCLUSION: The airway mycobiome in COPD is characterised by specific fungal genera associated with exacerbations and increased mortality.