Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Al-Buriahi AK, Al-Gheethi AA, Senthil Kumar P, Radin Mohamed RMS, Yusof H, Alshalif AF, et al.
    Chemosphere, 2022 Jan;287(Pt 2):132162.
    PMID: 34826899 DOI: 10.1016/j.chemosphere.2021.132162
    Rhodamine B (RhB) dye used in the textile industries is associated with carcinogenic and neurotoxic effects with a high potential to cause a variety of human diseases. Semiconductor photocatalysts synthesised through agriculture waste extracts exhibited high efficiency for RhB removal. The current review aimed to explore the efficiency and mechanism of RhB degradation using different photocatalysts that have been used in recent years, as well as the effect of various factors on the removal process. Zinc oxide nanoparticles (ZnO NPs) synthesised from plant extract is the most effective for the RhB degradation with the efficiency reaching 100% after 210 min. The photocatalysis process depends on the pH because pH changes the balance of water dissociation, which impacts the formation of hydroxyl radicals and the surface load of the catalyst. Analysis using Jupyter Notebook revealed a strong correlation between the concentration of ZnO NPs and the photocatalysis efficiency (R = 0.72). These findings reveal that man-sized photocatalysts have a high potential for removing RhB from the wastewater.
    Matched MeSH terms: Rhodamines
  2. Abd Aziz SN, Pung SY, Ramli NN, Lockman Z
    ScientificWorldJournal, 2014;2014:252851.
    PMID: 24587716 DOI: 10.1155/2014/252851
    The photodegradation efficiency of ZnO nanoparticles in removal of organic pollutants deteriorates over time as a high percentage of the nanoparticles can be drained away by water during the wastewater treatment. This problem can be solved by growing the ZnO nanorods on stainless steel wire. In this work, ZnO nanorods were successfully grown on stainless steel wire by chemical vapour deposition. The SAED analysis indicates that ZnO nanorod is a single crystal and is preferentially grown in [0001] direction. The deconvoluted O 1s peak at 531.5 eV in XPS analysis is associated with oxygen deficient, revealing that the ZnO nanorods contain many oxygen vacancies. This observation is further supported by the finding of the small I(uv)/I(vis) ratio, that is, ~1 in the photoluminescence analysis. The growth of ZnO nanorods on stainless steel wire was governed by vapour-solid mechanism as there were no Fe particles observed at the tips of the nanorods. The photodegradation of Rhodamine B solution by ZnO nanorods followed the first-order kinetics.
    Matched MeSH terms: Rhodamines/chemistry*
  3. Hakami AAH, Wabaidur SM, Ali Khan M, Abdullah Alothman Z, Rafatullah M, Siddiqui MR
    Molecules, 2020 Oct 06;25(19).
    PMID: 33036289 DOI: 10.3390/molecules25194564
    Lower dye concentrations and the presence of several dyes along with other matrices in environmental samples restrict their determination. Herein, a highly sensitive and rapid ultra-performance tandem mass spectrometric method was developed for simultaneous determination of cationic dyes, namely methylene blue (MB), rhodamine B (RB) and crystal violet (CV), in environmental samples. To preconcentrate environmental samples, solid-phase extraction cartridges were developed by using hydrogen peroxide modified pistachio shell biomass (MPSB). The surface morphological and chemical functionalities of MPSB were well characterized. The developed method was validated considering different validation parameters. In terms of accuracy and precision, the %RSD for all three dyes at all four concentration points was found to be between 1.26 and 2.76, while the accuracy reported in terms of the recovery was found to be 98.02%-101.70%. The recovery was found to be in the range of 98.11% to 99.55%. The real sample analysis shows that MB, RB, and CV were found in the ranges of 0.39-5.56, 0.32-1.92 and 0.27-4.36 μg/mL, respectively.
    Matched MeSH terms: Rhodamines/chemistry*
  4. Yap SS, Siew WO, Tou TY, Ng SW
    Appl Opt, 2002 Mar 20;41(9):1725-8.
    PMID: 11921803
    A microscope slide acting as a passive waveguide was coated by three separate poly(vinyl alcohol) films that were doped with Coumarin 460, Disodium Fluorescein, and Rhodamine 640 perchlorate. On collinear pumping by a nitrogen laser, these dyes furnished primary red-green-blue laser emissions that were collected and waveguided by the microscope slide but exited from both ends. Frosting the waveguide exit introduced light scattering at the glass-air interface and spatially overlaid the red-green-blue laser emissions that emerged as a uniform white-light beam.
    Matched MeSH terms: Rhodamines
  5. Zhi LL, Zaini MA
    Water Sci Technol, 2017 02;75(3-4):864-880.
    PMID: 28234287 DOI: 10.2166/wst.2016.568
    This work was aimed to evaluate the feasibility of castor bean residue based activated carbons prepared through metals chloride activation. The activated carbons were characterized for textural properties and surface chemistry, and the adsorption data of rhodamine B were established to investigate the removal performance. Zinc chloride-activated carbon with specific surface area of 395 m(2)/g displayed a higher adsorption capacity of 175 mg/g. Magnesium chloride and iron(III) chloride are less toxic and promising agents for composite chemical activation. The adsorption data obeyed Langmuir isotherm and pseudo-second-order kinetics model. The rate-limiting step in the adsorption of rhodamine B is film diffusion. The positive values of enthalpy and entropy indicate that the adsorption is endothermic and spontaneous at high temperature.
    Matched MeSH terms: Rhodamines/analysis*; Rhodamines/chemistry
  6. Md Saad SK, Ali Umar A, Ali Umar MI, Tomitori M, Abd Rahman MY, Mat Salleh M, et al.
    ACS Omega, 2018 Mar 31;3(3):2579-2587.
    PMID: 31458546 DOI: 10.1021/acsomega.8b00109
    This paper reports the synthesis of two-dimensional, hierarchical, porous, and (001)-faceted metal (Ag, Zn, and Al)-doped TiO2 nanostructures (TNSs) and the study of their photocatalytic activity. Two-dimensional metal-doped TNSs were synthesized using the hydrolysis of ammonium hexafluorotitanate in the presence of hexamethylenetetramine and metal precursors. Typical morphology of metal-doped TNSs is a hierarchical nanosheet that is composed of randomly stacked nanocubes (dimensions of up to 5 μm and 200 nm in edge length and thickness, respectively) and has dominant (001) facets exposed. Raman analysis and X-ray photoelectron spectroscopy results indicated that the Ag doping, compared to Zn and Al, much improves the crystallinity degree and at the same time dramatically lowers the valence state binding energy of the TNS and provides an additional dopant oxidation state into the system for an enhanced electron-transfer process and surface reaction. These are assumed to enhance the photocatalytic of the TNS. In a model of photocatalytic reaction, that is, rhodamine B degradation, the AgTNS demonstrates a high photocatalytic activity by converting approximately 91% of rhodamine B within only 120 min, equivalent to a rate constant of 0.018 m-1 and ToN and ToF of 94 and 1.57 min-1, respectively, or 91.1 mmol mg-1 W-1 degradation when normalized to used light source intensity, which is approximately 2 times higher than the pristine TNS and several order higher when compared to Zn- and Al-doped TNSs. Improvement of the crystallinity degree, decrease in the defect density and the photogenerated electron and hole recombination, and increase of the oxygen vacancy in the AgTNS are found to be the key factors for the enhancement of the photocatalytic properties. This work provides a straightforward strategy for the preparation of high-energy (001) faceted, two-dimensional, hierarchical, and porous Ag-doped TNSs for potential use in photocatalysis and photoelectrochemical application.
    Matched MeSH terms: Rhodamines
  7. Tahlan S, Kumar S, Ramasamy K, Lim SM, Shah SAA, Mani V, et al.
    BMC Chem, 2019 Dec;13(1):50.
    PMID: 31384798 DOI: 10.1186/s13065-019-0567-x
    Background: Nitrogen containing heterocycles are widely used and investigated by pharmaceutical industry, as they are important in discovery and designing of new drug molecules. Drugs with a benzimidazole nucleus possess exclusive structural features and electron-rich atmosphere, which enable them to bind to a number of biologically important targets and result in a wide range of activities. This has served as the basis of the present study whereby new scaffolds with benzimidazole moiety were designed and synthesized.

    Methods: The structures of synthesized compounds were confirmed by physicochemical and spectral means. The synthesized compounds were screened for their antimicrobial and antiproliferative activities by tube dilution and Sulforhodamine B (SRB) assays, respectively.

    Results and conclusion: The in vitro biological screening results revealed that compound Z24 exhibited promising antimicrobial and anticancer activities which are comparable to standards.

    Matched MeSH terms: Rhodamines
  8. Zakiah Ramle, Rashidah Abdul Rahim
    Trop Life Sci Res, 2016;27(11):151-157.
    MyJurnal
    A lipase producer psychrophilic microorganism isolated from Arctic sample was
    studied. The genomic DNA of the isolate was extracted using modified CTAB method.
    Identification of the isolate by morphological and 16S rRNA sequence analysis revealed
    that the isolate is closely related to Arthrobacter gangotriensis (97% similarity).
    A. gangotriensis was determined as positive lipase producer based on the plate screening
    using specific and sensitive plate assay of Rhodamine B. The PCR result using
    Arthrobacter sp.’s full lipase gene sequence as the template primers emphasised a
    possible lipase gene at 900 bp band size. The gene is further cloned in a suitable vector
    system for expression of lipase.
    Matched MeSH terms: Rhodamines
  9. Al-Gheethi AA, Azhar QM, Senthil Kumar P, Yusuf AA, Al-Buriahi AK, Radin Mohamed RMS, et al.
    Chemosphere, 2022 Jan;287(Pt 2):132080.
    PMID: 34509011 DOI: 10.1016/j.chemosphere.2021.132080
    Rhodamine B (RhB) is among the toxic dyes due to the carcinogenic, neurotoxic effects and ability to cause several diseases for humans. The adsorption with agricultural waste adsorbent recorded high performance for the RhB removal. The current review aimed to explore the efficiency of different adsorbents which have been used in the few last years for removing RhB dye from wastewater. The data of adsorption of RhB using agricultural wastes were collected from the Scopus database in the period between 2015 and 2021. The use of agricultural wastes and adsorbents as a replacement for the activated has received high attention among researchers. The RhB removal methods by microbial enzymes and biomass occurred between 76 and 90.1%. In comparison, the adsorption with agricultural wastes such as activated carbon white sugar reached 98% within 12 min. The adsorption process has a wide range of pH (3-10) due to the zwitterionic forms of RhB. Gmelina aborea leaf activated carbon is among the agriculture wastes absorbents that exhibited 1000 mg g-1 of the adsorption capacity. It appeared that the agricultural wastes adsorbents have a high potential for removing RhB from the wastewater.
    Matched MeSH terms: Rhodamines
  10. Pang YL, Abdullah AZ
    J Hazard Mater, 2012 Oct 15;235-236:326-35.
    PMID: 22939090 DOI: 10.1016/j.jhazmat.2012.08.008
    Fe-doped titanium dioxide (TiO(2)) nanotubes were prepared using sol-gel followed by hydrothermal methods and characterized using various methods. The sonocatalytic activity was evaluated based on oxidation of Rhodamine B under ultrasonic irradiation. Iron ions (Fe(3+)) might incorporate into the lattice and intercalated in the interlayer spaces of TiO(2) nanotubes. The catalysts showed narrower band gap energies, higher specific surface areas, more active surface oxygen vacancies and significantly improved sonocatalytic activity. The optimum Fe doping at Fe:Ti=0.005 showed the highest sonocatalytic activity and exceeded that of un-doped TiO(2) nanotubes by a factor of 2.3 times. It was believed that Fe(3+) doping induced the formation of new states close to the valence band and conduction bands and accelerated the separation of charge carriers. Leached Fe(3+) could catalyze Fenton-like reaction and led to an increase in the hydroxyl radical (OH) generation. Fe-doped TiO(2) nanotubes could retain high degradation efficiency even after being reused for 4 cycles with minimal loss of Fe from the surface of the catalyst.
    Matched MeSH terms: Rhodamines/chemistry*
  11. Azlan K, Wan Saime WN, Lai Ken L
    J Environ Sci (China), 2009;21(3):296-302.
    PMID: 19634439
    The capabilities of chitosan and chitosan-EGDE (ethylene glycol diglycidyl ether) beads for removing Acid Red 37 (AR 37) and Acid Blue 25 (AB 25) from aqueous solution were examined. Chitosan beads were cross-linked with EGDE to enhance its chemical resistance and mechanical strength. Experiments were performed as a function of pH, agitation period and concentration of AR 37 and AB 25. It was shown that the adsorption capacities of chitosan for both acid dyes were comparatively higher than those of chitosan-EGDE. This is mainly because cross-linking using EGDE reduces the major adsorption sites -NH3+ on chitosan. Langmuir isotherm model showed the best conformity compared to Freundlich and BET. The kinetic experimental data agreed very well to the pseudo second-order kinetic model. The desorption study revealed that after three cycles of adsorption and desorption by NaOH and HCl, both adsorbents retained their promising adsorption abilities. FT-IR analysis proved that the adsorption of acid dyes onto chitosan-based adsorbents was a physical adsorption. Results also showed that chitosan and chitosan-EGDE beads were favourable adsorbers and could be employed as low-cost alternatives for the removal of acid dyes in wastewater treatment.
    Matched MeSH terms: Rhodamines/chemistry
  12. Daud NK, Hameed BH
    J Hazard Mater, 2010 Apr 15;176(1-3):938-44.
    PMID: 20042285 DOI: 10.1016/j.jhazmat.2009.11.130
    The decolorization of Acid Red 1 (AR1) in aqueous solution was investigated by Fenton-like process. The effect of different reaction parameters such as different iron ions loading on rice husk ash (RHA), dosage of catalyst, initial pH, the initial hydrogen peroxide concentration ([H(2)O(2)](o)), the initial concentration of AR1 ([AR1](o)) and the reaction temperature on the decolorization of AR1 was studied. The optimal reacting conditions were found to be 0.070 wt.% of iron (III) oxide loading on RHA, dosage of catalyst=5.0 g L(-1), initial pH=2.0, [H(2)O(2)](o)=8 mM, [AR1](o)=50 mg L(-1) at temperature 30 degrees C. Under optimal condition, 96% decolorization efficiency of AR1 was achieved within 120 min of reaction.
    Matched MeSH terms: Rhodamines/chemistry*
  13. Aich K, Goswami S, Das S, Mukhopadhyay CD, Quah CK, Fun HK
    Inorg Chem, 2015 Aug 3;54(15):7309-15.
    PMID: 26192906 DOI: 10.1021/acs.inorgchem.5b00784
    On the basis of the Förster resonance energy transfer mechanism between rhodamine and quinoline-benzothiazole conjugated dyad, a new colorimetric as well as fluorescence ratiometric probe was synthesized for the selective detection of Cd(2+). The complex formation of the probe with Cd(2+) was confirmed through Cd(2+)-bound single-crystal structure. Capability of the probe as imaging agent to detect the cellular uptake of Cd(2+) was demonstrated here using living RAW cells.
    Matched MeSH terms: Rhodamines/chemistry
  14. Oyekanmi AA, Ahmad A, Hossain K, Rafatullah M
    PLoS One, 2019;14(5):e0216878.
    PMID: 31091269 DOI: 10.1371/journal.pone.0216878
    The adsorption of rhodamine B (RhB) using acid modified banana peels has been examined. Chemical characteristics of the adsorbents were observed in order to determine active functional groups. The major functional groups on the surface were OH, C = O, C = C and C-O-C. Interactions between operational parameters were studied using the central composite design (CCD) of response surface methodology (RSM). The predictions of the model output indicated that operational factors influenced responses at a confidence level of 95% (P<0.05). The optimum conditions for adsorption were pH 2 at a 0.2 g/L dose within 60 minutes of contact time. Isotherm studies were carried out using the optimized process variables. The data revealed that RhB adsorption fitted the Langmuir isotherm equation while the reduction of COD followed the Freundlich isotherm. Kinetic experiments fitted the pseudo second order model for RhB removal and COD reduction. The adsorption mechanism was not the only rate controlling step. Diffusion through the boundary layer described the pattern of adsorption.
    Matched MeSH terms: Rhodamines/chemistry*
  15. Danish M, Khanday WA, Hashim R, Sulaiman NS, Akhtar MN, Nizami M
    Ecotoxicol Environ Saf, 2017 May;139:280-290.
    PMID: 28167440 DOI: 10.1016/j.ecoenv.2017.02.001
    Box-Behnken model of response surface methodology was used to study the effect of adsorption process parameters for Rhodamine B (RhB) removal from aqueous solution through optimized large surface area date stone activated carbon. The set experiments with three input parameters such as time (10-600min), adsorbent dosage (0.5-10g/L) and temperature (25-50°C) were considered for statistical significance. The adequate relation was found between the input variables and response (removal percentage of RhB) and Fisher values (F- values) along with P-values suggesting the significance of various term coefficients. At an optimum adsorbent dose of 0.53g/L, time 593min and temperature 46.20°C, the adsorption capacity of 210mg/g was attained with maximum desirability. The negative values of Gibb(')s free energy (ΔG) predicted spontaneity and feasibility of adsorption; whereas, positive Enthalpy change (ΔH) confirmed endothermic adsorption of RhB onto optimized large surface area date stone activated carbons (OLSADS-AC). The adsorption data were found to be the best fit on the Langmuir model supporting monolayer type of adsorption of RhB with maximum monolayer layer adsorption capacity of 196.08mg/g.
    Matched MeSH terms: Rhodamines/chemistry*
  16. Lim SM, Agatonovic-Kustrin S, Lim FT, Ramasamy K
    J Pharm Biomed Anal, 2021 Jan 30;193:113702.
    PMID: 33160220 DOI: 10.1016/j.jpba.2020.113702
    Bioactive compounds from endophytic fungi exhibit diverse biological activities which include anticancer effect. Capitalising on the abundance of unexplored endophytes that reside within marine plants, this study assessed the anticancer potential of ethyl acetate endophytic fungal extracts (i.e. MBFT Tip 2.1, MBL 1.2, MBS 3.2, MKS 3 and MKS 3.1) derived from leaves, stem and fruits of marine plants that grow along Morib Beach, Malaysia. For identification of endophytic fungi, EF 4/ EF 3 and ITS 1/ ITS 4 PCR primer pairs were used to amplify the fungal 18S rDNA sequence and ITS region sequence, respectively. The resultant sequences were subjected to similarity search via the NCBI GenBank database. High-performance thin layer chromatography (HPTLC) hyphenated with bioassays was used to characterise the extracts in terms of their phytochemical profiles and bioactivity. Microchemical derivatisation was used to assess polyphenolic and phytosterol/ terpenoid content whereas biochemical derivatisation was used to establish antioxidant activities and α-amylase enzyme inhibition. The sulforhodamine B (SRB) assay was used to assess the anticancer effect of the extracts against HCT116 (a human colorectal cancer cell line). The present results indicated MBS 3.2 (Penicillium decumbens) as the most potent extract against HCT116 (IC50 = 0.16 μg/mL), approximately 3-times more potent than 5-flurouracil (IC50 = 0.46 μg/mL). Stepwise multiple regression method suggests that the anticancer effect of MBS 3.2 could be associated with high polyphenolic content and antioxidant potential. Nonlinear regression analysis confirmed that low to moderate α-amylase inhibition exhibits maximum anticancer activity. Current findings warrant further in-depth mechanistic studies.
    Matched MeSH terms: Rhodamines
  17. Sharma D, Kumar S, Narasimhan B, Ramasamy K, Lim SM, Shah SAA, et al.
    BMC Chem, 2019 Dec;13(1):46.
    PMID: 31384794 DOI: 10.1186/s13065-019-0564-0
    To combat the antimicrobial and anticancer drug resistance by pathogens and cancerous cells, efforts has been made to study the pharmacological activities of newly synthesized N-(4-(4-bromophenyl)thiazol-2-yl)-2-chloroacetamide derivatives. The molecular structures of the synthesized derivatives were confirmed by their physicochemical properties and spectroanalytical data (NMR, IR and elemental). The synthesized compounds were evaluated for their in vitro antimicrobial activity against bacterial (Gram positive and Gram negative) and fungal species using turbidimetric method and anticancer activity against oestrogen receptor positive human breast adenocarcinoma cancer cell line (MCF7) by Sulforhodamine B (SRB) assay. Molecular docking studies were carried out to study the binding mode of active compounds with receptor using Schrodinger v11.5. The antimicrobial activity results revealed that compounds d1, d2 and d3 have promising antimicrobial activity. Anticancer screening results indicated that compounds d6 and d7 were found to be the most active ones against breast cancer cell line. Furthermore, the molecular docking study demonstrated that compounds d1, d2, d3, d6 and d7 displayed good docking score within binding pocket of the selected PDB ID (1JIJ, 4WMZ and 3ERT) and has the potential to be used as lead compounds for rational drug designing.
    Matched MeSH terms: Rhodamines
  18. Sagadevan S, Chowdhury ZZ, Johan MRB, Aziz FA, Roselin LS, Podder J, et al.
    J Nanosci Nanotechnol, 2019 Nov 01;19(11):7139-7148.
    PMID: 31039868 DOI: 10.1166/jnn.2019.16666
    In this work, a simple, co-precipitation technique was used to prepare un-doped, pure tin oxide (SnO₂). As synthesized SnO₂ nanoparticles were doped with Cu2+ ions. Detailed characterization was carried out to observe the crystalline phase, morphological features and chemical constituents with opto-electrical and magnetic properties of the synthesized nanoparticles (NPs). X-ray diffraction analysis showed the existence of crystalline, tetragonal structure of SnO₂. Both the sample synthesized here showed different crystalline morphology. The band gap energy (Eg) of the synthesized sample was estimated and it was found to decrease from 3.60 to 3.26 eV. The band gap energy reduced due to increase in Cu2+ dopant amount inside the SnO₂ lattice. Optical properties were analyzed using absorption spectra and Photoluminescence (PL) spectra. It was observed that Cu2+ ions incorporated SnO₂ NPs exhibited more degradation efficiencies for Rhodamine B (RhB) dye compared to un-doped sample under UV-Visible irradiation. The dielectric characteristics of un-doped, pure and Cu2+ incorporated SnO₂ nanoparticles were studied at different frequency region under different temperatures. The ac conductivity and impedance analysis of pure and Cu2+ incorporated SnO₂ nanoparticles was also studied. The magnetic properties of the synthesized samples were analysed. Both the sample showed ferromagnetic properties. The research indicated that the Cu2+ ions doping can make the sample a promising candidate for using in the field of optoelectronics, magneto electronics, and microwave devices.
    Matched MeSH terms: Rhodamines
  19. Muthukumaran M, Dhinagaran G, Narayanan V, Raju T, Venkatachalam K, Karthika PC, et al.
    J Nanosci Nanotechnol, 2019 Nov 01;19(11):7215-7220.
    PMID: 31039878 DOI: 10.1166/jnn.2019.16671
    Graphene oxide/Cuprous oxide (GO/Cu₂O) composite is a visible light photocatalyst for the degradation of dyes. A simple and efficient approach for preparing GO/Cu₂O composite adopted in this study involves reducing cuprous oxide precursors in the presence of graphene oxide using an aqueous solution of pulp derived from banana fruit. The GO/Cu₂O composite was characterized by Fourier transform infrared spectroscopy (FT-IR), Diffused reflectance Ultraviolet visible spectroscopy (DRS UV-Vis), Raman spectroscopy and Field Emission Scanning electron microscopy (FE-SEM). Cu₂O particles were distributed randomly on the graphene oxide sheets due to the template effect of GO. The results showed higher photocatalytic activity for the composite (band gap 2.13 eV), for the degradation of the organic dyes (Methylene blue and Rhodamine-B). The enhanced photocatalytic activity is due to effective charge transfer from GO to Cu₂O, and high specific surface area which improves the effective separation of the generated electron-hole pairs. Our present study is inspired by a facile, low cost, green production of (GO/Cu₂O) composite whose photocatalytic activity can be extended to degradation of all other water-born textile dyes.
    Matched MeSH terms: Rhodamines
  20. Thang LY, See HH, Quirino JP
    Anal Chem, 2016 Sep 26.
    PMID: 27669824
    The translation of stacking techniques used in capillary electrophoresis (CE) to microchip CE (MCE) in order to improve concentration sensitivity is an important area of study. The success in stacking relies on the generation and control of the stacking boundaries which is a challenge in MCE because the manipulation of solutions is not as straightforward as in CE with a single channel. Here, a simple and rapid on-line sample concentration (stacking strategy) in a battery operated nonaqueous MCE device with a commercially available double T-junction glass chip is presented. A multi-stacking approach was developed in order to circumvent the issues for stacking in nonaqueous MCE. The cationic analytes from the two loading channels were injected under field-enhanced conditions and were focused by micelle-to-solvent stacking. This was achieved by the application of high electric fields along the two loading channels and a low electric field in the separation channel, with one ground electrode in the reservoir closest to the junction. At the junction, the stacked zones were re-stacked under field-enhanced conditions and then injected into the separation channels. The multi-stacking was verified under a fluorescence microscope using Rhodamine 6G as the analyte, revealing a sensitivity enhancement factor (SEF) of 110. The stacking approach was also implemented in the nonaqueous MCE with contactless conductivity detection of the anticancer drug tamoxifen as well as its metabolites. The multi-stacking and analysis time was 40 s and 110 s, respectively, the limit of detections was from 10 to 35 ng/mL, and the SEFs were 20 to 50. The method was able to quantify the target analytes from breast cancer patients.
    Matched MeSH terms: Rhodamines
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links