Displaying publications 1 - 20 of 180 in total

Abstract:
Sort:
  1. Abdullah Z, Tahir NM, Abas MR, Aiyub Z, Low BK
    Molecules, 2004 Jun 30;9(7):520-6.
    PMID: 18007451
    The reactions of 2-chloropyrimidine with methylamine, ethylamine and piperidine gave the corresponding 2-N-methylamino-, 2-N-ethylamino- and 2N- piperidinopyrimidines, respectively. The fluorescence properties of these alkylamino derivatives in chloroform, ethyl acetate, carbon tetrachloride, acetone, ether, ethanol and methanol were studied. All the alkylamino derivatives showed the highest fluorescence intensity in polar protic solvents; thus 2-N-methylaminopyrimidine (highest fluorescence intensity at 377 nm when excited at 282 nm) and 2-N-ethylaminopyrimidine (highest fluorescence intensity at 375 nm, when excited at 286 nm) showed the highest fluorescence in methanol. In ethanol, 2-N-piperidinopyrimidine showed a fluorescence peak at 403 nm when excited at 360 nm and in chloroform it fluoresced at 392 nm when excited at 356 nm.
    Matched MeSH terms: Solvents/chemistry
  2. Gorjian H, Khaligh NG
    Mol Divers, 2022 Dec;26(6):3047-3055.
    PMID: 34982359 DOI: 10.1007/s11030-021-10364-7
    A practical and facile synthesis of various coumarin derivatives was conducted using a liquid phase of 4,4'-trimethylenedipiperidine as a safe and greener dual-task reagent under catalyst-free and solvent-free conditions. This reagent is a commercially available solid and can be handled easily, having a liquid phase over a vast temperature range, high thermal stability, low toxicity, and good solubility in green solvents such as water and ethanol. It is worth mentioning that 4,4'-trimethylenedipiperidine could be completely recovered and regenerated after a simple process. The current method has other merits, including (a) minimizing the use of high-risk and toxic reagents and solvents; (b) the use of a secure and recoverable medium-organocatalyst instead of metal-based catalysts, (c) avoid tedious processes, harsh conditions, and a multi-step process for the preparation of catalysts, (d) transform phenol and salicyladehyde derivatives into the corresponding coumarin derivatives in good to high yields, (e) minimize hazardous waste generation. TMDP could be easily recovered and reused several times with no change in its activity. Furthermore, the current work demonstrated that the liquid phase of 4,4'-trimethylenedipiperidine can be a promising medium in organic reaction at higher temperatures due to its broad liquid range temperature, thermal stability, acceptor/donor hydrogen bond property, and other unique merits. New methodology for the synthesis of coumarines using liquid phase of TMDP under mild conditions.
    Matched MeSH terms: Solvents/chemistry
  3. Hoo DY, Low ZL, Low DYS, Tang SY, Manickam S, Tan KW, et al.
    Ultrason Sonochem, 2022 Nov;90:106176.
    PMID: 36174272 DOI: 10.1016/j.ultsonch.2022.106176
    With rising consumer demand for natural products, a greener and cleaner technology, i.e., ultrasound-assisted extraction, has received immense attention given its effective and rapid isolation for nanocellulose compared to conventional methods. Nevertheless, the application of ultrasound on a commercial scale is limited due to the challenges associated with process optimization, high energy requirement, difficulty in equipment design and process scale-up, safety and regulatory issues. This review aims to narrow the research gap by placing the current research activities into perspectives and highlighting the diversified applications, significant roles, and potentials of ultrasound to ease future developments. In recent years, enhancements have been reported with ultrasound assistance, including a reduction in extraction duration, minimization of the reliance on harmful chemicals, and, most importantly, improved yield and properties of nanocellulose. An extensive review of the strengths and weaknesses of ultrasound-assisted treatments has also been considered. Essentially, the cavitation phenomena enhance the extraction efficiency through an increased mass transfer rate between the substrate and solvent due to the implosion of microbubbles. Optimization of process parameters such as ultrasonic intensity, duration, and frequency have indicated their significance for improved efficiency.
    Matched MeSH terms: Solvents/chemistry
  4. Ahmad T, Iqbal J, Bustam MA, Babar M, Tahir MB, Sagir M, et al.
    Environ Res, 2023 Apr 01;222:115314.
    PMID: 36738770 DOI: 10.1016/j.envres.2023.115314
    The critical challenge being faced by our current modern society on a global scale is to reduce the surging effects of climate change and global warming, being caused by anthropogenic emissions of CO2 in the environment. Present study reports the surface driven adsorption potential of deep eutectic solvents (DESs) surface functionalized cerium oxide nanoparticles (CeNPs) for low pressure CO2 separation. The phosphonium based DESs were prepared using tetra butyl phosphoniumbromide as hydrogen bond acceptor (HBA) and 6 acids as hydrogen bond donors (HBDs). The as-developed DESs were characterized and employed for the surface functionalization of CeNPs with their subsequent utilization in adsorption-based CO2 adsorption. The synthesis of as-prepared DESs was confirmed through FTIR measurements and absence of precipitates, revealed through visual observations. It was found that DES6 surface functionalized CeNPs demonstrated 27% higher adsorption performance for CO2 capturing. On the contrary, DES3 coated CeNPs exhibited the least adsorption progress for CO2 separation. The higher adsorption performance associated with DES6 coated CeNPs was due to enhanced surface affinity with CO2 molecules that must have facilitated the mass transport characteristics and resulted an enhancement in CO2 adsorption performance. Carboxylic groups could have generated an electric field inside the pores to attract more polarizable adsorbates including CO2, are responsible for the relatively high values of CO2 adsorption. The quadruple movement of the CO2 molecules with the electron-deficient and pluralizable nature led to the enhancement of the interactive forces between the CO2 molecules and the CeNPs decorated with the carboxylic group hydrogen bond donor rich DES. The current findings may disclose the new research horizons and theoretical guidance for reduction in the environmental effects associated with uncontrolled CO2 emission via employing DES surface coated potential CeNPs.
    Matched MeSH terms: Solvents/chemistry
  5. Fahim H, Motamedzadegan A, Farahmandfar R, Khaligh NG
    Int J Biol Macromol, 2023 Mar 31;232:123268.
    PMID: 36646345 DOI: 10.1016/j.ijbiomac.2023.123268
    According to the 12 principles of green chemistry, surface functionalization was performed using glutaric anhydride under solvent-free and catalyst-free conditions. FTIR spectra and DS analyses demonstrated the functionalization of HCl-hydrolyzed cellulose. The influence of two parameters, i.e., the glutaric anhydride concentration and the reaction time, on the functionalization of HCl-hydrolyzed cellulose was investigated. Protocol efficiency was studied by a degree of substitution (DS). It was found that higher concentrations of glutaric anhydride cause an enhancement of DS to 0.75 and 0.87 for GA3-12 and GA9-12, respectively. In addition, the longer reaction time increased zeta potential from -12.2 ± 1.7 for G9-6 to -34.57 ± 2.2 for GA9-12. Morphology analysis by SEM showed a decrease in fiber length for the functionalized cellulose. DSC profiles confirmed dehydration at a range of 17 to 134 °C. A glass transition was revealed at -30 to -20 °C for all studied samples. The fusion, the depolymerization of cellulose chains, the cleavage of glycosidic linkages, and the decomposition of the crystalline parts of cellulose occur at 195 to 374 °C. Therefore, an efficient and greener process was developed to functionalize the HCl-hydrolyzed cellulose by glutaric anhydride, a safe and non-toxic anhydride, in the absence of the solvent and catalyst.
    Matched MeSH terms: Solvents/chemistry
  6. Thilakarathna RCN, Siow LF, Tang TK, Chan ES, Lee YY
    Ultrason Sonochem, 2023 Jan;92:106280.
    PMID: 36587443 DOI: 10.1016/j.ultsonch.2022.106280
    Ultrasound-assisted solvent extraction (UAE) was applied to extract underutilized Madhuca longifolia seed oil. The effect of extraction time, temperature, solvent type, solvent/sample ratio, and amplitude on the oil yield and recovery were investigated. Approximately 56.97% of oil yield and 99.54% of oil recovery were attained using mild conditions of 35 min, 35 °C, 40% amplitude, isopropanol to acetone (1:1), and solvent to sample (20 mL/g). UAE oil yield and recovery were comparable with Soxhlet extraction (SXE) whilst mechanical pressing (ME) yielded 
    Matched MeSH terms: Solvents/chemistry
  7. Imtiaz A, Othman MHD, Jilani A, Khan IU, Kamaludin R, Ayub M, et al.
    Chemosphere, 2023 Jun;325:138300.
    PMID: 36893870 DOI: 10.1016/j.chemosphere.2023.138300
    Among wide range of membrane-based operations, membrane contactors, as they reify comparatively modern membrane-based mechanism are gaining quite an attention in both pilot and industrial scales. In recent literature, carbon capture is one of the most researched applications of membrane contactors. Membrane contactors have the potential to minimize the energy consumption and capital cost of traditional CO2 absorptions columns. In a membrane contactor, CO2 regeneration can take place below the solvent boiling point, resulting into lower consumption of energy. Various polymeric as well as ceramic membrane materials have been employed in gas liquid membrane contactors along with several solvents including amino acids, ammonia, amines etc. This review article provides detailed introduction of membrane contactors in terms of CO2 removal. It also discusses that the main challenge that is faced by membrane contactors is membrane pore wetting caused by solvent that in turn can reduce the mass transfer coefficient. Other potential challenges such as selection of suitable solvent and membrane pair as well as fouling are also discussed in this review and are followed by potential ways to reduce them. Furthermore, both membrane gas separation and membrane contactor technologies are analysed and compared in this study on the basis of their characteristics, CO2 separation performances and techno economical transvaluation. Consequently, this review provides an opportunity to thoroughly understand the working principle of membrane contactors along its comparison with membrane-based gas separation technology. It also provides a clear understanding of latest innovations in membrane contactor module designs as well as challenges encountered by membrane contactors along with possible solutions to overcome these challenges. Finally, semi commercial and commercial implementation of membrane contactors has been highlighted.
    Matched MeSH terms: Solvents/chemistry
  8. Yong KJ, Wu TY
    Bioresour Technol, 2023 Sep;384:129238.
    PMID: 37245662 DOI: 10.1016/j.biortech.2023.129238
    Utilizing lignocellulosic biomass wastes to produce bioproducts is essential to address the reliance on depleting fossil fuels. However, lignin is often treated as a low-value-added component in lignocellulosic wastes. Valorization of lignin into value-added products is crucial to improve the economic competitiveness of lignocellulosic biorefinery. Monomers obtained from lignin depolymerization could be upgraded into fuel-related products. However, lignins obtained from conventional methods are low in β-O-4 content and, therefore, unsuitable for monomer production. Recent literature has demonstrated that lignins extracted with alcohol-based solvents exhibit preserved structures with high β-O-4 content. This review discusses the recent advances in utilizing alcohols to extract β-O-4-rich lignin, where discussion based on different alcohol groups is considered. Emerging strategies in employing alcohols for β-O-4-rich lignin extraction, including alcohol-based deep eutectic solvent, flow-through fractionation, and microwave-assisted fractionation, are reviewed. Finally, strategies for recycling or utilizing the spent alcohol solvents are also discussed.
    Matched MeSH terms: Solvents/chemistry
  9. Sazali AL, AlMasoud N, Amran SK, Alomar TS, Pa'ee KF, El-Bahy ZM, et al.
    Chemosphere, 2023 Oct;338:139485.
    PMID: 37442394 DOI: 10.1016/j.chemosphere.2023.139485
    It is essential to investigate the physicochemical and thermal properties of choline chloride (ChCl)-based deep eutectic solvents (DESs) as hydrogen bond acceptor (HBA) with various hydrogen bond donor (HBD) functional groups, such as α-hydroxy acid (lactic acid) or polyol (glycerol). It is important to consider how molar ratios impact these properties, as they may be altered for particular applications. This study aimed to examine the physicochemical and thermal properties of ChCl-based DESs with lactic acid (LA) or glycerol (Gly) at different molar ratios (1:2-1:10). The pH of ChCl:LA (0-1.0) is lower than that of ChCl:Gly (4.0-5.0) because of the hydrogen bonds between ChCl and LA. A higher amount of LA/Gly resulted in higher densities of ChCl:Gly (1.20-1.22 g cm-3) and ChCl:LA (1.16-1.19 g cm-3) due to the stronger hydrogen bonds and tighter packing of the molecules. The refractive index of ChCl:Gly (1.47-1.48) was higher than ChCl:LA (1.44-1.46), with a trend similar to density. The viscosities of ChCl:Gly (0.235-0.453 Pa s) and ChCl:LA (0.04-0.06 Pa s) increased with increasing LA/Gly molar ratio but decreased with temperature due to the high kinetic energy from heating, lowering the attractive forces between molecules. The activation energy for ChCl:LA (15.29-15.55 kJ mol-1) is greater than for ChCl:Gly (7.77-8.78 kJ mol-1), indicating that ChCl:LA has a greater viscosity-temperature dependence than ChCl:Gly. The DESs decomposition temperatures are 179.73-192.14 °C for ChCl:LA and 189.69-197.41 °C for ChCl:Gly. Freezing temperatures are correlated with the molecular weight of HBDs, with lower values causing a larger decrease in freezing temperatures. The interactions of polyols with anions were stronger than those of α-hydroxy acids with anions. The variations in HBA to HBD molar ratios affected DESs properties, providing a fundamental understanding of the properties critical for their diverse applications.
    Matched MeSH terms: Solvents/chemistry
  10. Yusof R, Abdulmalek E, Sirat K, Rahman MB
    Molecules, 2014 Jun 13;19(6):8011-26.
    PMID: 24932572 DOI: 10.3390/molecules19068011
    Density, viscosity and ionic conductivity data sets of deep eutectic solvents (DESs) formed by tetrabutylammonium bromide (TBABr) paired with ethlyene glycol, 1,3-propanediol, 1,5-pentanediol and glycerol hydrogen bond donors (HBDs) are reported. The properties of DES were measured at temperatures between 303 K and 333 K for HBD percentages of 66.7% to 90%. The effects of HBDs under different temperature and percentages are systematically analyzed. As expected, the measured density and viscosity of the studied DESs decreased with an increase in temperature, while ionic conductivity increases with temperature. In general, DESs made of TBABr and glycerol showed the highest density and viscosity and the lowest ionic conductivity when compared to other DESs. The presence of an extra hydroxyl group on glycerol in a DES affected the properties of the DES.
    Matched MeSH terms: Solvents/chemistry*
  11. Ewuzie RN, Genza JR, Abdullah AZ
    Int J Biol Macromol, 2024 Apr;265(Pt 2):131084.
    PMID: 38521312 DOI: 10.1016/j.ijbiomac.2024.131084
    Lignocellulosic biomass contains lignin, an aromatic and oxygenated substance and a potential method for lignin utilization is achieved through catalytic conversion into useful phenolic and aromatic monomers. The application of monometallic catalysts for lignin hydrogenolysis reaction remains one of the major reasons for the underutilization of lignin to produce valuable chemicals. Monometallic catalysts have many limitations such as limited catalytic sites for interacting with different lignin linkages, poor catalytic activity, low lignin conversion, and low product selectivity. It is due to lack of synergy with other metallic catalysts that can enhance the catalytic activity, stability, selectivity, and overall catalytic performance. To overcome these limitations, works on the application of bimetallic catalysts that can offer higher activity, selectivity, and stability have been initiated. In this review, cutting-edge insights into the catalytic hydrogenolysis of lignin, focusing on the production of phenolic and aromatic monomers using bimetallic catalysts within an internal hydrogen donor solvent are discussed. The contribution of this work lies in a critical discussion of recent reported findings, in-depth analyses of reaction mechanisms, optimal conditions, and emerging trends in lignin catalytic hydrogenolysis. The specific effects of catalytic active components on the reaction outcomes are also explored. Additionally, this review extends beyond current knowledge, offering forward-looking suggestions for utilizing lignin as a raw material in the production of valuable products across various industrial processes. This work not only consolidates existing knowledge but also introduces novel perspectives, paving the way for future advancements in lignin utilization and catalytic processes.
    Matched MeSH terms: Solvents/chemistry
  12. Moniruzzaman M, Goto M
    PMID: 29744542 DOI: 10.1007/10_2018_64
    Ionic liquids (ILs), a potentially attractive "green," recyclable alternative to environmentally harmful volatile organic compounds, have been increasingly exploited as solvents and/or cosolvents and/or reagents in a wide range of applications, including pretreatment of lignocellulosic biomass for further processing. The enzymatic delignification of biomass to degrade lignin, a complex aromatic polymer, has received much attention as an environmentally friendly process for clean separation of biopolymers including cellulose and lignin. For this purpose, enzymes are generally isolated from naturally occurring fungi or genetically engineered fungi and used in an aqueous medium. However, enzymatic delignification has been found to be very slow in these conditions, sometimes taking several months for completion. In this chapter, we highlight an environmentally friendly and efficient approach for enzymatic delignification of lignocellulosic biomass using room temperature ionic liquids (ILs) as (co)solvents or/and pretreatment agents. The method comprises pretreatment of lignocellulosic biomass in IL-aqueous systems before enzymatic delignification, with the aim of overcoming the low delignification efficiency associated with low enzyme accessibility to the solid substrate and low substrate and product solubilities in aqueous systems. We believe the processes described here can play an important role in the conversion of lignocellulosic biomass-the most abundant renewable biomaterial in the world-to biomaterials, biopolymers, biofuels, bioplastics, and hydrocarbons. Graphical Abstract.
    Matched MeSH terms: Solvents/chemistry
  13. Zhang Y, Ren H, Li B, Udin SM, Maarof H, Zhou W, et al.
    Int J Biol Macromol, 2023 Jul 01;242(Pt 2):124829.
    PMID: 37210053 DOI: 10.1016/j.ijbiomac.2023.124829
    Deep eutectic solvents (DESs) composed by amino acids (L-arginine, L-proline, L-alanine) as the hydrogen bond acceptors (HBAs) and carboxylic acids (formic acid, acetic acid, lactic acid, levulinic acid) as hydrogen bond donors (HBDs) were prepared and used for the dissolution of dealkaline lignin (DAL). The mechanism of lignin dissolution in DESs was explored at molecular level by combining the analysis of Kamlet-Taft (K-T) solvatochromic parameters, FTIR spectrum and density functional theory (DFT) calculations of DESs. Firstly, it was found that the formation of new hydrogen bonds between lignin and DESs mainly drove the dissolution of lignin, which were accompanied by the erosion of hydrogen bond networks in both lignin and DESs. The nature of hydrogen bond network within DESs was fundamentally determined by the type and number of functional groups in both HBA and HBD, which affected its ability to form hydrogen bond with lignin. One hydroxyl group and carboxyl group in HBDs provided active protons, which facilitated proton-catalyzed cleavage of β-O-4, thus enhancing the dissolution of DESs. The superfluous functional group resulted in more extensive and stronger hydrogen bond network in the DESs, thus decreasing the lignin dissolving ability. Moreover, it was found that lignin solubility had a closed positive correlation with the subtraction value of α and β (net hydrogen donating ability) of DESs. Among all the investigated DESs, L-alanine/formic acid (1:3) with the strong hydrogen-bond donating ability (acidity), weak hydrogen-bond accepting ability (basicity) and small steric-hindrance effect showed the best lignin dissolving ability (23.99 wt%, 60 °C). On top of that, the value of α and β of L-proline/carboxylic acids DESs showed some positive correlation with the global electrostatic potential (ESP) maxima and minima of the corresponding DESs respectively, indicating the analysis of ESP quantitative distributions of DESs could be an effective tool for DESs screening and design for lignin dissolution as well as other applications.
    Matched MeSH terms: Solvents/chemistry
  14. Bahadori L, Chakrabarti MH, Manan NS, Hashim MA, Mjalli FS, AlNashef IM, et al.
    PLoS One, 2015;10(12):e0144235.
    PMID: 26642045 DOI: 10.1371/journal.pone.0144235
    The temperature dependence of the density, dynamic viscosity and ionic conductivity of several deep eutectic solvents (DESs) containing ammonium-based salts and hydrogen bond donvnors (polyol type) are investigated. The temperature-dependent electrolyte viscosity as a function of molar conductivity is correlated by means of Walden's rule. The oxidation of ferrocene (Fc/Fc+) and reduction of cobaltocenium (Cc+/Cc) at different temperatures are studied by cyclic voltammetry and potential-step chronoamperometry in DESs. For most DESs, chronoamperometric transients are demonstrated to fit an Arrhenius-type relation to give activation energies for the diffusion of redox couples at different temperatures. The temperature dependence of the measured conductivities of DES1 and DES2 are better correlated with the Vogel-Tamman-Fulcher equation. The kinetics of the Fc/Fc+ and Cc+/Cc electrochemical systems have been investigated over a temperature range from 298 to 338 K. The heterogeneous electron transfer rate constant is then calculated at different temperatures by means of a logarithmic analysis. The glycerol-based DES (DES5) appears suitable for further testing in electrochemical energy storage devices.
    Matched MeSH terms: Solvents/chemistry*
  15. Abdul Rahman SNS, Chai YH, Lam MK
    J Environ Manage, 2024 Mar;355:120447.
    PMID: 38460326 DOI: 10.1016/j.jenvman.2024.120447
    This research explicitly investigates the utilization of Chlorella Vulgaris sp. microalgae as a renewable source for lipid production, focusing on its application in bioplastic manufacturing. This study employed the supercritical fluid extraction technique employing supercritical CO2 (sCO2) as a green technology to selectively extract and produce PHA's precursor utilizing CO2 solvent as a cleaner solvent compared to conventional extraction method. The study assessed the effects of three extraction parameters, namely temperature (40-60 °C), pressure (15-35 MPa), and solvent flow rate (4-8 ml/min). The pressure, flowrate, and temperature were found to be the most significant parameters affecting the sCO2 extraction. Through Taguchi optimization, the optimal parameters were determined as 60 °C, 35 MPa, and 4 ml/min with the highest lipid yield of 46.74 wt%; above-average findings were reported. Furthermore, the pretreatment process involved significant effects such as crumpled and exhaustive structure, facilitating the efficient extraction of total lipids from the microalgae matrix. This study investigated the microstructure of microalgae biomatrix before and after extraction using scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Fourier-transform infrared spectroscopy (FTIR) was utilized to assess the potential of the extracted material as a precursor for biodegradable plastic production, with a focus on reduced heavy metal content through inductively coupled plasma-optical emission spectrometry (ICP-OES) analysis. The lipid extracted from Chlorella Vulgaris sp. microalgae was analysed using gas chromatography-mass spectrometry (GC-MS), identifying key constituents, including oleic acid (C18H34O2), n-Hexadecanoic acid (C16H32O2), and octadecanoic acid (C18H36O2), essential for polyhydroxyalkanoate (PHA) formation.
    Matched MeSH terms: Solvents/chemistry
  16. Meraj A, Jawaid M, Singh SP, Nasef MM, Ariffin H, Fouad H, et al.
    Sci Rep, 2024 Apr 15;14(1):8672.
    PMID: 38622317 DOI: 10.1038/s41598-024-59200-6
    Extraction of lignin via green methods is a crucial step in promoting the bioconversion of lignocellulosic biomasses. In the present study, utilisation of natural deep eutectic solvent for the pretreatment of kenaf fibres biomass is performed. Furthermore, extracted lignin from natural deep eutectic solvent pretreated kenaf biomass was carried out and its comparative study with commercial lignin was studied. The extracted lignin was characterized and investigated through Infrared Fourier transform spectroscopy, X-ray Diffraction, thermogravimetric analysis, UV-Vis spectroscopy, and scanning electron microscopy. FTIR Spectra shows that all samples have almost same set of absorption bands with slight difference in frequencies. CHNS analysis of natural deep eutectic solvent pretreated kenaf fibre showed a slight increase in carbon % from 42.36 to 43.17% and an increase in nitrogen % from - 0.0939 to - 0.1377%. Morphological analysis of commercial lignin shows irregular/uneven surfaces whereas natural deep eutectic solvent extracted lignin shows smooth and wavy surface. EDX analysis indicated noticeable peaks for oxygen and carbon elements which are present in lignocellulosic biomass. Thermal properties showed that lignin is constant at higher temperatures due to more branching and production of extremely condensed aromatic structures. In UV-VIS spectroscopy, commercial lignin shows slightly broad peak between 300 and 400 nm due to presence of carbonyl bond whereas, natural deep eutectic solvent extracted lignin does not show up any peak in this range. XRD results showed that the crystallinity index percentage for kenaf and natural deep eutectic solvent treated kenaf was 70.33 and 69.5% respectively. Therefore, these innovative solvents will undoubtedly have significant impact on the development of clean, green, and sustainable products for biocatalysts, extraction, electrochemistry, adsorption applications.
    Matched MeSH terms: Solvents/chemistry
  17. Ali MS, Said ZS, Rahman RN, Chor AL, Basri M, Salleh AB
    Int J Mol Sci, 2013 Aug 28;14(9):17608-17.
    PMID: 23989606 DOI: 10.3390/ijms140917608
    Seeding is a versatile method for optimizing crystal growth. Coupling this technique with capillary counter diffusion crystallization enhances the size and diffraction quality of the crystals. In this article, crystals for organic solvent-tolerant recombinant elastase strain K were successfully produced through microseeding with capillary counter-diffusion crystallization. This technique improved the nucleation success rate with a low protein concentration (3.00 mg/mL). The crystal was grown in 1 M ammonium phosphate monobasic and 0.1 M sodium citrate tribasic dihydrate pH 5.6. The optimized crystal size was 1 × 0.1 × 0.05 mm³. Elastase strain K successfully diffracted up to 1.39 Å at SPring-8, Japan, using synchrotron radiation for preliminary data diffraction analysis. The space group was determined to be monoclinic space group P12(1)1 with unit cell parameters of a = 38.99 Ǻ, b = 90.173 Å and c = 40.60 Å.
    Matched MeSH terms: Solvents/chemistry*
  18. Bayat S, Tejo BA, Salleh AB, Abdmalek E, Normi YM, Abdul Rahman MB
    Chirality, 2013 Nov;25(11):726-34.
    PMID: 23966316 DOI: 10.1002/chir.22205
    A series of tripeptide organocatalysts containing a secondary amine group and two amino acids with polar side chain units were developed and evaluated in the direct asymmetric intermolecular aldol reaction of 4-nitrobenzaldehyde and cyclohexanone. The effectiveness of short polar peptides as asymmetric catalysts in aldol reactions to attain high yields of enantio- and diastereoselective isomers were investigated. In a comparison, glutamic acid and histidine produced higher % ee and yields when they were applied as the second amino acid in short trimeric peptides. These short polar peptides were found to be efficient organocatalysts for the asymmetric aldol addition reaction in aqueous media.
    Matched MeSH terms: Solvents/chemistry
  19. Kamarudin AF, Hizaddin HF, El-Blidi L, Ali E, Hashim MA, Hadj-Kali MK
    Molecules, 2020 Nov 03;25(21).
    PMID: 33152997 DOI: 10.3390/molecules25215093
    Deep eutectic solvents (DESs) are green solvents developed as an alternative to conventional organic solvents and ionic liquids to extract nitrogen compounds from fuel oil. DESs based on p-toluenesulfonic acid (PTSA) are a new solvent class still under investigation for extraction/separation. This study investigated a new DES formed from a combination of tetrabutylphosphonium bromide (TBPBr) and PTSA at a 1:1 molar ratio. Two sets of ternary liquid-liquid equilibrium experiments were performed with different feed concentrations of nitrogen compounds ranging up to 20 mol% in gasoline and diesel model fuel oils. More than 99% of quinoline was extracted from heptane and pentadecane using the DES, leaving the minutest amount of the contaminant. Selectivity was up to 11,000 for the heptane system and up to 24,000 for the pentadecane system at room temperature. The raffinate phase's proton nuclear magnetic resonance (1H-NMR) spectroscopy and GC analysis identified a significantly small amount of quinoline. The selectivity toward quinoline was significantly high at low solute concentrations. The root-mean-square deviation between experimental data and the non-random two-liquid (NRTL) model was 1.12% and 0.31% with heptane and pentadecane, respectively. The results showed that the TBPBr/PTSADES is considerably efficient in eliminating nitrogen compounds from fuel oil.
    Matched MeSH terms: Solvents/chemistry
  20. Tan YT, Ngoh GC, Chua ASM
    Bioresour Technol, 2019 Jun;281:359-366.
    PMID: 30831515 DOI: 10.1016/j.biortech.2019.02.010
    In this study, acidic deep eutectic solvents (DES) synthesized from various organic carboxylic acid hydrogen bond donors were applied to lignocellulosic oil palm empty fruit bunch (EFB) pretreatment. The influence of functional group types on acid and their molar ratios with hydrogen bond acceptor on lignin extraction were evaluated. The result showed presence of hydroxyl group and short alkyl chain enhanced biomass fractionation and lignin extraction. Choline chloride:lactic acid (CC-LA) with the ratio of 1:15 and choline chloride:formic acid (CC-FA) with 1:2 ratio extracted more than 60 wt% of lignin. CC-LA DES-extracted lignin (DEEL) exhibited comparable reactivity with technical and commercial lignin based on its phenolic hydroxyl content (3.33-3.72 mmol/glignin). Also, the DES-pretreated EFB comprised of enriched glucan content after biopolymer fractionation. Both DES-pretreated EFB and DEEL can be potential feedstock for subsequent conversion processes. This study presented DES as an effective and facile pretreatment method for reactive lignin extraction.
    Matched MeSH terms: Solvents/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links