Displaying all 16 publications

Abstract:
Sort:
  1. Alqahtani A, Sani SFA, Narissa NHA, Alanazi A, Podolyak Z, Nisbet A, et al.
    Appl Radiat Isot, 2020 Jun;160:109132.
    PMID: 32351224 DOI: 10.1016/j.apradiso.2020.109132
    As a result of the various evolving needs, thermoluminescence dosimetry is constantly under development, with applications intended in environmental and personal radiation monitoring through to the sensing of radiotherapy and radiation processing doses. In radiotherapy dosimetry challenges include small-field profile evaluation, encompassing the fine beams of radiosurgery, evaluations confronting the steep dose gradients of electronic brachytherapy and the high dose rates of FLASH radiotherapy. Current work concerns the thermoluminescent dosimetric properties of commercial low-cost borosilicate glass in the form of thin (sub-mm to a few mm) plates, use being made of microscope cover-slips irradiated using clinical external-beam radiotherapy facilities as well as through use of 60Co gamma irradiators. In using megavoltage photons and MeV electrons, characterization of the dosimetric response has been made for cover-slips of thicknesses up to 4 mm. Reproducibility to within +/5% has been obtained. In particular, for doses up to 10 Gy, the borosilicate cover-slips have been demonstrated to have considerable potential for use in high spatial resolution radiotherapy dosimetry, down to 0.13 mm in present work, with a coefficient of determination in respect of linearity of >0.99 for the thinner cover-slips. Results are also presented for 0.13- and 1.00-mm thick cover slips irradiated to 60Co gamma-ray doses, initially in the range 5- to 25 Gy, subsequently extended to 5 kGy-25 kGy, again providing linear response.
    Matched MeSH terms: Thermoluminescent Dosimetry/instrumentation*
  2. Abdulla YA, Amin YM, Khoo HB
    J Radiol Prot, 2002 Dec;22(4):417-21.
    PMID: 12546228
    Percentage depth doses for 6 and 10 MV x-ray beams from a linear accelerator were measured using approximately 1 cm long (approximately 0.3 mg) Ge-doped optical fibre as a thermoluminescence dosimeter for two field sizes, 5 x 5 and 10 x 10 cm2. The results indicate that the Ge-doped optical fibre dosimeter is in good agreement with the results from a PTW 30001 cylindrical ionisation chamber and TLD-100. For 6 MV x-ray beams we observe that the depth of maximum dose d(max) is 1.5 and 2 cm for field sizes of 5 x 5 and 10 x 10 cm2 respectively. For 10 MV d(max) is 2 cm for a field size of 5 x 5 cm2 and 2.5 cm for a 10 x 10 cm2 field.
    Matched MeSH terms: Thermoluminescent Dosimetry/instrumentation*
  3. Begum M, Rahman AKMM, Abdul-Rashid HA, Yusoff Z, Mat Nawi SN, Khandaker MU, et al.
    Appl Radiat Isot, 2021 Aug;174:109771.
    PMID: 34048992 DOI: 10.1016/j.apradiso.2021.109771
    Present study concerns the key thermoluminescence (TL) properties of photonic crystal fibres (PCFs), seeking development of alternatively structured TL materials that are able to offer a advantages over existing passive dosimeters. In terms of their internal structure and light guiding properties the PCFs, collapsed and structured, differ significantly from that of conventional optical fibres. To investigate the dosimetric parameters of the PCFs use was made of a linear accelerator producing a 6 MV photon beam, delivering doses ranging from 0.5 Gy to 8 Gy. The parameters studied included TL response, linearity index, glow curves, relative sensitivity and TL signal fading, the results being compared against those obtained using TLD-100 chips. At 4 Gy photon dose the Ge-doped collapsed PCFs were found to provide a response 27 × that of structured PCF, also giving a TL yield similar to that of standard TLD-100 chips. Over post-irradiation periods of 15 and 30 days collapsed PCF TL signal fading were 8% and 17% respectively, with corresponding values of 37% and 64% for the structured PCF. Trapping parameters including the order of kinetics (b), activation energy (E) and frequency factor (s-1) were assessed with Chen's peak shape method. Lifetime of trapping centre was found to be (2.36 E+03) s and (9.03 E +01) s regarding the collapsed and structured PCF respectively with 6 Gy of photon beam. For the Ge-doped collapsed PCF, the high TL yield, sensitivity and low fading provide the basis of a highly promising system of TLD for radiotherapy applications.
    Matched MeSH terms: Thermoluminescent Dosimetry/instrumentation*
  4. Samat SB, Evans CJ, Kadni T, Dolah MT
    Radiat Prot Dosimetry, 2009 Feb;133(3):186-91.
    PMID: 19299478 DOI: 10.1093/rpd/ncp035
    During the years 1985-2008, the Secondary Standards Dosimetry Laboratory of Malaysia (SSDL Malaysia) has participated 37 times in the IAEA/WHO intercomparison programmes. This paper reports an analysis of the intercomparison data and demonstrates that the quality of the SSDL calibration service is well within the limits required by IAEA.
    Matched MeSH terms: Thermoluminescent Dosimetry/instrumentation*
  5. Hashim S, Ibrahim SA, Che Omar SS, Alajerami YS, Saripan MI, Noor NM, et al.
    Appl Radiat Isot, 2014 Aug;90:258-60.
    PMID: 24858954 DOI: 10.1016/j.apradiso.2014.04.016
    Radiation effects of photon irradiation in pure Photonic Crystal Fibres (PCF) and Flat fibres (FF) are still much less investigated in thermoluminescense dosimetry (TLD). We have reported the TL response of PCF and FF subjected to 6 MV photon irradiation. The proposed dosimeter shows good linearity at doses ranging from 1 to 4 Gy. The small size of these detectors points to its use as a dosimeter at megavoltage energies, where better tissue-equivalence and the Bragg-Gray cavity theory prevails.
    Matched MeSH terms: Thermoluminescent Dosimetry/instrumentation*
  6. Alajerami YS, Hashim S, Ramli AT, Saleh MA, Saripan MI, Alzimami K, et al.
    Appl Radiat Isot, 2013 Aug;78:21-5.
    PMID: 23644162 DOI: 10.1016/j.apradiso.2013.03.095
    New glasses Li2CO3-K2CO3-H3BO3 (LKB) co-doped with CuO and MgO, or with TiO2 and MgO, were synthesized by the chemical quenching technique. The thermoluminescence (TL) responses of LKB:Cu,Mg and LKB:Ti,Mg irradiated with 6 MV photons or 6 MeV electrons were compared in the dose range 0.5-4.0 Gy. The standard commercial dosimeter LiF:Mg,Ti (TLD-100) was used to calibrate the TL reader and as a reference in comparison of the TL properties of the new materials. The dependence of the responses of the new materials on (60)Co dose is linear in the range of 1-1000 Gy. The TL yields of both of the co-doped glasses and TLD-100 are greater for electron irradiation than for photon irradiation. The TL sensitivity of LKB:Ti,Mg is 1.3 times higher than the sensitivity of LKB:Cu,Mg and 12 times less than the sensitivity of TLD-100. The new TL dosimetric materials have low effective atomic numbers, good linearity of the dose responses, excellent signal reproducibility, and a simple glow curve structure. This combination of properties makes them suitable for radiation dosimetry.
    Matched MeSH terms: Thermoluminescent Dosimetry/instrumentation*
  7. Hashim S, Bradley DA, Saripan MI, Ramli AT, Wagiran H
    Appl Radiat Isot, 2010 Apr-May;68(4-5):700-3.
    PMID: 19892557 DOI: 10.1016/j.apradiso.2009.10.027
    This paper describes a preliminary study of the thermoluminescence (TL) response of doped SiO(2) optical fibres subjected to (241)AmBe neutron irradiation. The TL materials, which comprise Al- and Ge-doped silica fibres, were exposed in close contact with the (241)AmBe source to obtain fast neutron interactions through use of measurements obtained with and without a Cd filter (the filter being made to entirely enclose the fibres). The neutron irradiations were performed for exposure times of 1-, 2-, 3-, 5- and 7-days in a neutron tank filled with water. In this study, use was also made of the Monte Carlo N-particle (MCNP) code version 5 (V5) to simulate the neutron irradiations experiment. It was found that the commercially available Ge-doped and Al-doped optical fibres show a linear dose response subjected to fast neutrons from (241)AmBe source up to seven days of irradiations. The simulation performed using MCNP5 also exhibits a similar pattern, albeit differing in sensitivity. The TL response of Ge-doped fibre is markedly greater than that of the Al-doped fibre, the total absorption cross section for Ge in both the fast and thermal neutrons region being some ten times greater than that of Al.
    Matched MeSH terms: Thermoluminescent Dosimetry/instrumentation*
  8. Alajerami YS, Hashim S, Ramli AT, Saleh MA, Kadni T
    Radiat Prot Dosimetry, 2013 Jun;155(1):1-10.
    PMID: 23193136 DOI: 10.1093/rpd/ncs310
    The thermoluminescent properties of boric glass modified with lithium and potassium carbonates (LKB) and co-doped with CuO and MgO are reported for the first time. Two techniques are applied to investigate the effect of dopants and co-dopants on the thermal stimulation properties of LKB. The induced TL glow curves of a CuO-doped sample are found to be at 220°C with a single peak. An enhancement of about three times is shown with the increment of 0.1 mol % MgO as a co-dopant impurity. This enhancement may contribute to the ability of magnesium to create extra electron traps and consequently the energy transfer to monovalent Cu(+) ions. LKB:Cu,Mg is low Z material (Zeff=8.55), and observed 15 times less sensitive than LiF: Mg, Ti (TLD-100). The proposed dosemeter showed good linearity in TL dose-response, low fading and excellent reproducibility with a simple glow curve, and thus, can be used in the radiation dosimetry.
    Matched MeSH terms: Thermoluminescent Dosimetry/instrumentation*
  9. Jafari SM, Jordan TJ, Distefano G, Bradley DA, Spyrou NM, Nisbet A, et al.
    Br J Radiol, 2015;88(1055):20140804.
    PMID: 26258442 DOI: 10.1259/bjr.20140804
    To investigate the feasibility of using glass beads as novel thermoluminescent dosemeters (TLDs) for radiotherapy treatment plan verification.
    Matched MeSH terms: Thermoluminescent Dosimetry/instrumentation*
  10. Banjade DP, Shrestha SL, Shukri A, Tajuddin AA, Bhat M
    Australas Phys Eng Sci Med, 2002 Sep;25(3):110-8.
    PMID: 12416587
    This is a study using LiF:Mg;Ti thermoluminescent dosimeter (TLD) rods in phantoms to investigate the effect of lack of backscatter on exit dose. Comparing the measured dose with anticipated dose calculated using tissue maximum ratio (TMR) or percentage depth dose (PDD) gives rise to a correction factor. This correction factor may be applied to in-vivo dosimetry results to derive true dose to a point within the patient. Measurements in a specially designed humanoid breast phantom as well as patients undergoing radiotherapy treatment were also been done. TLDs with reproducibility of within +/- 3% (1 SD) are irradiated in a series of measurements for 6 and 10 MV photon beams from a medical linear accelerator. The measured exit doses for the different phantom thickness for 6 MV beams are found to be lowered by 10.9 to 14.0% compared to the dose derived from theoretical estimation (normalized dose at dmax). The same measurements for 10 MV beams are lowered by 9.0 to 13.5%. The variations of measured exit dose for different field sizes are found to be within 2.5%. The exit doses with added backscatter material from 2 mm up to 15 cm, shows gradual increase and the saturated values agreed within 1.5% with the expected results for both beams. The measured exit doses in humanoid breast phantom as well as in the clinical trial on patients undergoing radiotherapy also agreed with the predicted results based on phantom measurements. The authors' viewpoint is that this technique provides sufficient information to design exit surface bolus to restore build down effect in cases where part of the exit surface is being considered as a target volume. It indicates that the technique could be translated for in vivo dose measurements, which may be a conspicuous step of quality assurance in clinical practice.
    Matched MeSH terms: Thermoluminescent Dosimetry/instrumentation*
  11. Banjade DP, Raj TA, Ng BS, Xavier S, Tajuddin AA, Shukri A
    Med Dosim, 2003;28(2):73-8.
    PMID: 12804703
    Verification of tumor dose for patients undergoing external beam radiotherapy is an important part of quality assurance programs in radiation oncology. Among the various methods available, entrance dose in vivo is one reliable method used to verify the tumor dose delivered to a patient. In this work, entrance dose measurements using LiF:Mg;Ti and LiF:Mg;Cu;P thermoluminescent dosimeters (TLDs) without buildup cap was carried out. The TLDs were calibrated at the surface of a water equivalent phantom against the maximum dose, using 6- and 10-MV photon and 9-MeV electron beams. The calibration geometry was such that the TLDs were placed on the surface of the "solid-water" phantom and a calibrated ionization chamber was positioned inside the phantom at calibration depth. The calibrated TLDs were then utilized to measure the entrance dose during the treatment of actual patients. Measurements were also carried out in the same phantom simultaneously to check the stability of the system. The dose measured in the phantom using the TLDs calibrated for entrance dose to 6-and 10-MV photon beams was found to be close to the dose determined by the treatment planning system (TPS) with discrepancies of not more than 4.1% (mean 1.3%). Consequently, the measured entrance dose during dose delivery to the actual patients with a prescribed geometry was found to be compatible with a maximum discrepancy of 5.7% (mean 2.2%) when comparison was made with the dose determined by the TPS. Likewise, the measured entrance dose for electron beams in the phantom and in actual patients using the calibrated TLDs were also found to be close, with maximum discrepancies of 3.2% (mean 2.0%) and 4.8% (mean 2.3%), respectively. Careful implementation of this technique provides vital information with an ability to confidently accept treatment algorithms derived by the TPS or to re-evaluate the parameters when necessary.
    Matched MeSH terms: Thermoluminescent Dosimetry/instrumentation*
  12. Rais NNM, Bradley DA, Hashim A, Isa NM, Osman ND, Ismail I, et al.
    J Radiol Prot, 2019 Sep;39(3):N8-N18.
    PMID: 31018196 DOI: 10.1088/1361-6498/ab1c16
    Novel germanium (Ge)-doped silica glass fibres tailor-made in Malaysia are fast gaining recognition as potential media for thermoluminescence (TL) dosimetry, with active research ongoing into exploitation of their various beneficial characteristics. Investigation is made herein of the capability of these media for use in diagnostic imaging dosimetry, specifically at the radiation dose levels typically obtained in conduct of Computed Tomography (CT). As a first step within such efforts, there is need to investigate the performance of the fibres using tightly defined spectra, use being made of a Philips constant potential industrial x-ray facility, Model MG165, located at the Malaysian Nuclear Agency Secondary Standards Dosimetry Lab (SSDL). Standard radiation beam qualities (termed RQT) have been established for CT, in accord with IEC 61267: 2003 and IAEA Technical Reports Series No. 457: 2007. A calibrated ionisation chamber has also been utilised, forming a component part of the SSDL equipment. The fabricated fibres used in this study are 2.3 mol% flat fibre (FF) of dimensions 643 × 356 μm2 and 2.3 mol% cylindrical fibre (CF) of 481 μm diameter, while the commercial fibre used is 4 mol% with core diameter of 50 μm. The dopant concentrations are nominal preform values. The fibres have been irradiated to doses of 20, 30 and 40 milligray (mGy) for each of the beam qualities RQT 8, RQT 9 and RQT 10. For x-rays generated at constant potential values from 100 to 150 kV, a discernible energy-dependent response is seen, comparisons being made with that of lithium fluoride (LiF) thermoluminescence dosimeters (TLD-100). TL yield versus dose has also been investigated for x-ray doses from 2 to 40 mGy, all exhibiting linearity. Compared to TLD-100, greater sensitivity is observed for the fibres.
    Matched MeSH terms: Thermoluminescent Dosimetry/instrumentation*
  13. Moradi F, Ung NM, Mahdiraji GA, Khandaker MU, See MH, Taib NA, et al.
    Phys Med Biol, 2019 04 12;64(8):08NT04.
    PMID: 30840946 DOI: 10.1088/1361-6560/ab0d4e
    Ge-doped silica fibre (GDSF) thermoluminescence dosimeters (TLD) are non-hygroscopic spatially high-resolution radiation sensors with demonstrated potential for radiotherapy dosimetry applications. The INTRABEAM® system with spherical applicators, one of a number of recent electronic brachytherapy sources designed for intraoperative radiotherapy (IORT), presents a representative challenging dosimetry situation, with a low keV photon beam and a desired rapid dose-rate fall-off close-up to the applicator surface. In this study, using the INTRABEAM® system, investigations were made into the potential application of GDSF TLDs for in vivo IORT dosimetry. The GDSFs were calibrated over the respective dose- and depth-range 1 to 20 Gy and 3 to 45 mm from the x-ray probe. The effect of different sizes of spherical applicator on TL response of the fibres was also investigated. The results show the GDSF TLDs to be applicable for IORT dose assessment, with the important incorporated correction for beam quality effects using different spherical applicator sizes. The total uncertainty in use of this type of GDSF for dosimetry has been found to range between 9.5% to 12.4%. Subsequent in vivo measurement of skin dose for three breast patients undergoing IORT were performed, the measured doses being below the tolerance level for acute radiation toxicity.
    Matched MeSH terms: Thermoluminescent Dosimetry/instrumentation
  14. Rozaila ZS, Khandaker MU, Abdul Sani SF, Sabtu SN, Amin YM, Maah MJ, et al.
    J Radiol Prot, 2017 Sep 25;37(3):761-779.
    PMID: 28581438 DOI: 10.1088/1361-6498/aa770e
    The sensitivity of a novel silica-based fibre-form thermoluminescence dosimeter was tested off-site of a rare-earths processing plant, investigating the potential for obtaining baseline measurements of naturally occurring radioactive materials. The dosimeter, a Ge-doped collapsed photonic crystal fibre (PCFc) co-doped with B, was calibrated against commercially available thermoluminescent dosimetry (TLD) (TLD-200 and TLD-100) using a bremsstrahlung (tube-based) x-ray source. Eight sampling sites within 1 to 20 km of the perimeter of the rare-earth facility were identified, the TLDs (silica- as well as TLD-200 and TLD-100) in each case being buried within the soil at fixed depth, allowing measurements to be obtained, in this case for protracted periods of exposure of between two to eight months. The values of the dose were then compared against values projected on the basis of radioactivity measurements of the associated soils, obtained via high-purity germanium gamma-ray spectrometry. Accord was found in relative terms between the TL evaluations at each site and the associated spectroscopic results. Thus said, in absolute terms, the TL evaluated doses were typically less than those derived from gamma-ray spectroscopy, by ∼50% in the case of PCFc-Ge. Gamma spectrometry analysis typically provided an upper limit to the projected dose, and the Marinelli beaker contents were formed from sieving to provide a homogenous well-packed medium. However, with the radioactivity per unit mass typically greater for smaller particles, with preferential adsorption on the surface and the surface area per unit volume increasing with decrease in radius, this made for an elevated dose estimate. Prevailing concentrations of key naturally occurring radionuclides in soil,226Ra,232Th and40K, were also determined, together with radiological dose evaluation. To date, the area under investigation, although including a rare-earth processing facility, gives no cause for concern from radiological impact. The current study reveals the suitability of the optical fibre based micro-dosimeter for all-weather monitoring of low-level environmental radioactivity.
    Matched MeSH terms: Thermoluminescent Dosimetry/instrumentation*
  15. Alanazi A, Alkhorayef M, Alzimami K, Jurewicz I, Abuhadi N, Dalton A, et al.
    Appl Radiat Isot, 2016 Nov;117:106-110.
    PMID: 26777569 DOI: 10.1016/j.apradiso.2016.01.001
    Graphite ion chambers and semiconductor diode detectors have been used to make measurements in phantoms but these active devices represent a clear disadvantage when considered for in vivo dosimetry. In such circumstance, dosimeters with atomic number similar to human tissue are needed. Carbon nanotubes have properties that potentially meet the demand, requiring low voltage in active devices and an atomic number similar to adipose tissue. In this study, single-wall carbon nanotubes (SWCNTs) buckypaper has been used to measure the beta particle dose deposited from a strontium-90 source, the medium displaying thermoluminescence at potentially useful sensitivity. As an example, the samples show a clear response for a dose of 2Gy. This finding suggests that carbon nanotubes can be used as a passive dosimeter specifically for the high levels of radiation exposures used in radiation therapy. Furthermore, the finding points towards further potential applications such as for space radiation measurements, not least because the medium satisfies a demand for light but strong materials of minimal capacitance.
    Matched MeSH terms: Thermoluminescent Dosimetry/instrumentation*
  16. Alawiah A, Bauk S, Marashdeh MW, Nazura MZ, Abdul-Rashid HA, Yusoff Z, et al.
    Appl Radiat Isot, 2015 Oct;104:197-202.
    PMID: 26188687 DOI: 10.1016/j.apradiso.2015.07.011
    In regard to thermoluminescence (TL) applied to dosimetry, in recent times a number of researchers have explored the role of optical fibers for radiation detection and measurement. Many of the studies have focused on the specific dopant concentration, the type of dopant and the fiber core diameter, all key dependencies in producing significant increase in the sensitivity of such fibers. At doses of less than 1 Gy none of these investigations have addressed the relationship between dose response and TL glow peak behavior of erbium (Er)-doped silica cylindrical fibers (CF). For x-rays obtained at accelerating potentials from 70 to 130 kVp, delivering doses of between 0.1 and 0.7 Gy, present study explores the issue of dose response, special attention being paid to determination of the kinetic parameters and dosimetric peak properties of Er-doped CF. The effect of dose response on the kinetic parameters of the glow peak has been compared against other fiber types, revealing previously misunderstood connections between kinetic parameters and radiation dose. Within the investigated dose range there was an absence of supralinearity of response of the Er-doped silica CF, instead sub-linear response being observed. Detailed examination of glow peak response and kinetic parameters has thus been shown to shed new light of the rarely acknowledged issue of the limitation of TL kinetic model and sub-linear dose response of Er-doped silica CF.
    Matched MeSH terms: Thermoluminescent Dosimetry/instrumentation*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links