Displaying publications 1 - 20 of 315 in total

Abstract:
Sort:
  1. Fallahiarezoudar E, Ahmadipourroudposht M, Yusof NM, Idris A, Ngadiman NHA
    Polymers (Basel), 2017 Nov 06;9(11).
    PMID: 30965883 DOI: 10.3390/polym9110584
    Valvular dysfunction as the prominent reason of heart failure may causes morbidity and mortality around the world. The inability of human body to regenerate the defected heart valves necessitates the development of the artificial prosthesis to be replaced. Besides, the lack of capacity to grow, repair or remodel of an artificial valves and biological difficulty such as infection or inflammation make the development of tissue engineering heart valve (TEHV) concept. This research presented the use of compound of poly-l-lactic acid (PLLA), thermoplastic polyurethane (TPU) and maghemite nanoparticle (γ-Fe₂O₃) as the potential biomaterials to develop three-dimensional (3D) aortic heart valve scaffold. Electrospinning was used for fabricating the 3D scaffold. The steepest ascent followed by the response surface methodology was used to optimize the electrospinning parameters involved in terms of elastic modulus. The structural and porosity properties of fabricated scaffold were characterized using FE-SEM and liquid displacement technique, respectively. The 3D scaffold was then seeded with aortic smooth muscle cells (AOSMCs) and biological behavior in terms of cell attachment and proliferation during 34 days of incubation was characterized using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and confocal laser microscopy. Furthermore, the mechanical properties in terms of elastic modulus and stiffness were investigated after cell seeding through macro-indentation test. The analysis indicated the formation of ultrafine quality of nanofibers with diameter distribution of 178 ± 45 nm and 90.72% porosity. In terms of cell proliferation, the results exhibited desirable proliferation (109.32 ± 3.22% compared to the control) of cells over the 3D scaffold in 34 days of incubation. The elastic modulus and stiffness index after cell seeding were founded to be 22.78 ± 2.12 MPa and 1490.9 ± 12 Nmm², respectively. Overall, the fabricated 3D scaffold exhibits desirable structural, biological and mechanical properties and has the potential to be used in vivo.
    Matched MeSH terms: Tissue Engineering
  2. Touri M, Moztarzadeh F, Osman NAA, Dehghan MM, Mozafari M
    Mater Sci Eng C Mater Biol Appl, 2018 Mar 01;84:236-242.
    PMID: 29519434 DOI: 10.1016/j.msec.2017.11.037
    Tissue engineering scaffolds with oxygen generating elements have shown to be able to increase the level of oxygen and cell survivability in specific conditions. In this study, biphasic calcium phosphate (BCP) scaffolds with the composition of 60% hydroxyapatite (HA) and 40% beta-tricalcium phosphate (β-TCP), which have shown a great potential for bone tissue engineering applications, were fabricated by a direct-write assembly (robocasting) technique. Then, the three-dimensional (3D)-printed scaffolds were coated with different ratios of an oxygen releasing agent, calcium peroxide (CPO), which encapsulated within a polycaprolactone (PCL) matrix through dip-coating, and used for in situ production of oxygen in the implanted sites. The structure, composition and morphology of the prepared scaffolds were characterized by different techniques. The oxygen release kinetics and biological investigations of the scaffolds were also studied in vitro. The results showed that oxygen release behaviour was sustained and dependant on the concentration of CPO encapsulated in the PCL coating matrix. It was also demonstrated that the coated scaffolds, having 3% CPO in the coating system, could provide a great potential for promoting bone ingrowth with improving osteoblast cells viability and proliferation under hypoxic conditions. The findings indicated that the prepared scaffolds could play a significant role in engineering of large bone tissue implants with limitations in oxygen diffusion.
    Matched MeSH terms: Tissue Engineering*
  3. Singhvi G, Patil S, Girdhar V, Chellappan DK, Gupta G, Dua K
    Panminerva Med, 2018 Dec;60(4):170-173.
    PMID: 29856179 DOI: 10.23736/S0031-0808.18.03467-5
    One of the novel and progressive technology employed in pharmaceutical manufacturing, design of medical device and tissue engineering is three-dimensional (3D) printing. 3D printing technologies provide great advantages in 3D scaffolds fabrication over traditional methods in the control of pore size, porosity, and interconnectivity. Various techniques of 3D-printing include powder bed fusion, fused deposition modeling, binder deposition, inkjet printing, photopolymerization and many others which are still evolving. 3D-printing technique been employed in developing immediate release products, various systems to deliver multiple release modalities etc. 3D printing has opened the door for new generation of customized drug delivery with built-in flexibility for safer and effective therapy. Our mini-review provides a quick snapshot on an overview of 3D printing, various techniques employed, applications and its advancements in pharmaceutical sciences.
    Matched MeSH terms: Tissue Engineering/methods*
  4. Hussin MSF, Mohd Serah A, Azlan KA, Abdullah HZ, Idris MI, Ghazali I, et al.
    Polymers (Basel), 2021 Feb 22;13(4).
    PMID: 33671617 DOI: 10.3390/polym13040647
    Collecting information from previous investigations and expressing it in a scientometrics study can be a priceless guide to getting a complete overview of a specific research area. The aim of this study is to explore the interrelated connection between alginate, gelatine, and hydroxyapatite within the scope of bone tissue and scaffold. A review of traditional literature with data mining procedures using bibliometric analyses was considered to identify the evolution of the selected research area between 2009 and 2019. Bibliometric methods and knowledge visualization technologies were implemented to investigate diverse publications based on the following indicators: year of publication, document type, language, country, institution, author, journal, keyword, and number of citations. An analysis using a bibliometric study found that 7446 papers were located with the keywords "bone tissue" and "scaffold", and 1767 (alginate), 185 (gelatine), 5658 (hydroxyapatite) papers with those specific sub keywords. The number of publications that relate to "tissue engineering" and bone more than doubled between 2009 (1352) and 2019 (2839). China, the United States and India are the most productive countries, while Sichuan University and the Chinese Academy of Science from China are the most important institutions related to bone tissue scaffold. Materials Science and Engineering C is the most productive journal, followed by the Journal of Biomedical Materials Research Part A. This paper is a starting point, providing the first bibliometric analysis study of bone tissue and scaffold considering alginate, gelatine and hydroxyapatite. A bibliometric analysis would greatly assist in giving a scientific insight to support desired future research work, not only associated with bone tissue engineering applications. It is expected that the analysis of alginate, gelatine and hydroxyapatite in terms of 3D bioprinting, clinical outcomes, scaffold architecture, and the regenerative medicine approach will enhance the research into bone tissue engineering in the near future. Continued studies into these research fields are highly recommended.
    Matched MeSH terms: Tissue Engineering
  5. Salih M, Shaharuddin B, Abdelrazeg S
    Curr Stem Cell Res Ther, 2020;15(3):211-218.
    PMID: 31995019 DOI: 10.2174/1574888X15666200129145251
    Organ and tissue transplantation are limited by the scarcity of donated organs or tissue sources. The success of transplantation is limited by the risk of disease transmission and immunological- related rejection. There is a need for new strategies and innovative solutions to make transplantation readily available, safer and with less complications to increase the success rates. Accelerating progress in stem cell biology and biomaterials development have pushed tissue and organ engineering to a higher level. Among stem cells repertoire, Mesenchymal Stem Cells (MSC) are gaining interest and recognized as a cell population of choice. There is accumulating evidence that MSC growth factors, its soluble and insoluble proteins are involved in several key signaling pathways to promote tissue development, cellular differentiation and regeneration. MSC as multipotent non-hematopoietic cells with paracrine factors is advantageous for regenerative therapies. In this review, we discussed and summarized the important features of MSC including its immunomodulatory properties, mechanism of homing in the direction of tissue injury, licensing of MSC and the role of MSC soluble factors in cell-free therapy. Special consideration is highlighted on the rapidly growing research interest on the roles of MSC in ocular surface regeneration.
    Matched MeSH terms: Tissue Engineering*
  6. Boo, L., Sofiah, S., Selvaratnam, L., Tai, C.C., Pingguan-Murphy, B., Kamarul, T.
    Malays Orthop J, 2009;3(2):16-23.
    MyJurnal
    Purpose:To investigate the feasibilty of using processed human amniotic membrane (HAM) to support the attachment and proliferation of chondrocytes in vitro which it turn can be utilised as a cell delivery vehicle in tissue engineering applications. Methods: Fresh HAM obtained from patients undergoing routine elective ceasarean sections was harvested., processed and dried using either freez drying (FD) or air drying (AD) methods prior to sterilisation by gamma irradiation. Isolated, processed and characterised rabbit autologous chondrolytes were seeded on processsed HAM and cultured for up to three weeks. Cell attachment and proliferation were examined qualitatively using inverted brightfield microcospy. Results: Processed HAM appeared to allow cell attachment when implanted with chrondocytes. Although cells seeded on AD and FD HAM did not appear to attach as strongly as those seeded on glycerol preserved intact human amniotic membrane, these cells to be proliferated in cell culture conditions. Conclusion: Prelimanary results show that processed HAM chondrocyte attachment and proliferation.
    Matched MeSH terms: Tissue Engineering
  7. Khalili AA, Ahmad MR
    Int J Mol Sci, 2015 Aug 05;16(8):18149-84.
    PMID: 26251901 DOI: 10.3390/ijms160818149
    Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM) can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events.
    Matched MeSH terms: Tissue Engineering/methods*
  8. Mohanadas HP, Nair V, Doctor AA, Faudzi AAM, Tucker N, Ismail AF, et al.
    Ann Biomed Eng, 2023 Nov;51(11):2365-2383.
    PMID: 37466879 DOI: 10.1007/s10439-023-03322-x
    Additive Manufacturing is noted for ease of product customization and short production run cost-effectiveness. As our global population approaches 8 billion, additive manufacturing has a future in maintaining and improving average human life expectancy for the same reasons that it has advantaged general manufacturing. In recent years, additive manufacturing has been applied to tissue engineering, regenerative medicine, and drug delivery. Additive Manufacturing combined with tissue engineering and biocompatibility studies offers future opportunities for various complex cardiovascular implants and surgeries. This paper is a comprehensive overview of current technological advancements in additive manufacturing with potential for cardiovascular application. The current limitations and prospects of the technology for cardiovascular applications are explored and evaluated.
    Matched MeSH terms: Tissue Engineering/methods
  9. Law JX, Musa F, Ruszymah BH, El Haj AJ, Yang Y
    Med Eng Phys, 2016 Sep;38(9):854-61.
    PMID: 27349492 DOI: 10.1016/j.medengphy.2016.05.017
    Collagen and fibrin are widely used in tissue engineering due to their excellent biocompatibility and bioactivities that support in vivo tissue formation. These two hydrogels naturally present in different wound healing stages with different regulatory effects on cells, and both of them are mechanically weak in the reconstructed hydrogels. We conducted a comparative study by the growth of rat dermal fibroblasts or dermal fibroblasts and epidermal keratinocytes together in collagen and fibrin constructs respectively with and without the reinforcement of electrospun poly(lactic acid) nanofiber mesh. Cell proliferation, gel contraction and elastic modulus of the constructs were measured on the same gels at multiple time points during the 22 day culturing period using multiple non-destructive techniques. The results demonstrated considerably different cellular activities within the two types of constructs. Co-culturing keratinocytes with fibroblasts in the collagen constructs reduced the fibroblast proliferation, collagen contraction and mechanical strength at late culture point regardless of the presence of nanofibers. Co-culturing keratinocytes with fibroblasts in the fibrin constructs promoted fibroblast proliferation but exerted no influence on fibrin contraction and mechanical strength. The presence of nanofibers in the collagen and fibrin constructs played a favorable role on the fibroblast proliferation when keratinocytes were absent. Thus, this study exhibited new evidence of the strong cross-talk between keratinocytes and fibroblasts, which can be used to control fibroblast proliferation and construct contraction. This cross-talk activity is extracellular matrix-dependent in terms of the fibrous network morphology, density and strength.
    Matched MeSH terms: Tissue Engineering
  10. Balaji Raghavendran HR, Puvaneswary S, Talebian S, Murali MR, Raman Murali M, Naveen SV, et al.
    PLoS One, 2014;9(8):e104389.
    PMID: 25140798 DOI: 10.1371/journal.pone.0104389
    A comparative study on the in vitro osteogenic potential of electrospun poly-L-lactide/hydroxyapatite/collagen (PLLA/HA/Col, PLLA/HA, and PLLA/Col) scaffolds was conducted. The morphology, chemical composition, and surface roughness of the fibrous scaffolds were examined. Furthermore, cell attachment, distribution, morphology, mineralization, extracellular matrix protein localization, and gene expression of human mesenchymal stromal cells (hMSCs) differentiated on the fibrous scaffolds PLLA/Col/HA, PLLA/Col, and PLLA/HA were also analyzed. The electrospun scaffolds with a diameter of 200-950 nm demonstrated well-formed interconnected fibrous network structure, which supported the growth of hMSCs. When compared with PLLA/H%A and PLLA/Col scaffolds, PLLA/Col/HA scaffolds presented a higher density of viable cells and significant upregulation of genes associated with osteogenic lineage, which were achieved without the use of specific medium or growth factors. These results were supported by the elevated levels of calcium, osteocalcin, and mineralization (P<0.05) observed at different time points (0, 7, 14, and 21 days). Furthermore, electron microscopic observations and fibronectin localization revealed that PLLA/Col/HA scaffolds exhibited superior osteoinductivity, when compared with PLLA/Col or PLLA/HA scaffolds. These findings indicated that the fibrous structure and synergistic action of Col and nano-HA with high-molecular-weight PLLA played a vital role in inducing osteogenic differentiation of hMSCs. The data obtained in this study demonstrated that the developed fibrous PLLA/Col/HA biocomposite scaffold may be supportive for stem cell based therapies for bone repair, when compared with the other two scaffolds.
    Matched MeSH terms: Tissue Engineering/methods*
  11. Boukari Y, Qutachi O, Scurr DJ, Morris AP, Doughty SW, Billa N
    J Biomater Sci Polym Ed, 2017 Nov;28(16):1966-1983.
    PMID: 28777694 DOI: 10.1080/09205063.2017.1364100
    The development of patient-friendly alternatives to bone-graft procedures is the driving force for new frontiers in bone tissue engineering. Poly (dl-lactic-co-glycolic acid) (PLGA) and chitosan are well-studied and easy-to-process polymers from which scaffolds can be fabricated. In this study, a novel dual-application scaffold system was formulated from porous PLGA and protein-loaded PLGA/chitosan microspheres. Physicochemical and in vitro protein release attributes were established. The therapeutic relevance, cytocompatibility with primary human mesenchymal stem cells (hMSCs) and osteogenic properties were tested. There was a significant reduction in burst release from the composite PLGA/chitosan microspheres compared with PLGA alone. Scaffolds sintered from porous microspheres at 37 °C were significantly stronger than the PLGA control, with compressive strengths of 0.846 ± 0.272 MPa and 0.406 ± 0.265 MPa, respectively (p 
    Matched MeSH terms: Tissue Engineering*
  12. Zulkifli FH, Hussain FSJ, Zeyohannes SS, Rasad MSBA, Yusuff MM
    Mater Sci Eng C Mater Biol Appl, 2017 Oct 01;79:151-160.
    PMID: 28629002 DOI: 10.1016/j.msec.2017.05.028
    Green porous and ecofriendly scaffolds have been considered as one of the potent candidates for tissue engineering substitutes. The objective of this study is to investigate the biocompatibility of hydroxyethyl cellulose (HEC)/silver nanoparticles (AgNPs), prepared by the green synthesis method as a potential host material for skin tissue applications. The substrates which contained varied concentrations of AgNO3(0.4%-1.6%) were formed in the presence of HEC, were dissolved in a single step in water. The presence of AgNPs was confirmed visually by the change of color from colorless to dark brown, and was fabricated via freeze-drying technique. The outcomes exhibited significant porosity of >80%, moderate degradation rate, and tremendous value of water absorption up to 1163% in all samples. These scaffolds of HEC/AgNPs were further characterized by SEM, UV-Vis, ATR-FTIR, TGA, and DSC. All scaffolds possessed open interconnected pore size in the range of 50-150μm. The characteristic peaks of Ag in the UV-Vis spectra (417-421nm) revealed the formation of AgNPs in the blend composite. ATR-FTIR curve showed new existing peak, which implies the oxidation of HEC in the cellulose derivatives. The DSC thermogram showed augmentation in Tgwith increased AgNO3concentration. Preliminary studies of cytotoxicity were carried out in vitro by implementation of the hFB cells on the scaffolds. The results substantiated low toxicity of HEC/AgNPs scaffolds, thus exhibiting an ideal characteristic in skin tissue engineering applications.
    Matched MeSH terms: Tissue Engineering
  13. Alias MA, Buenzli PR
    Int J Numer Method Biomed Eng, 2020 01;36(1):e3279.
    PMID: 31724309 DOI: 10.1002/cnm.3279
    Most biological tissues grow by the synthesis of new material close to the tissue's interface, where spatial interactions can exert strong geometric influences on the local rate of growth. These geometric influences may be mechanistic or cell behavioural in nature. The control of geometry on tissue growth has been evidenced in many in vivo and in vitro experiments, including bone remodelling, wound healing, and tissue engineering scaffolds. In this paper, we propose a generalisation of a mathematical model that captures the mechanistic influence of curvature on the joint evolution of cell density and tissue shape during tissue growth. This generalisation allows us to simulate abrupt topological changes such as tissue fragmentation and tissue fusion, as well as three dimensional cases, through a level-set-based method. The level-set method developed introduces another Eulerian field than the level-set function. This additional field represents the surface density of tissue-synthesising cells, anticipated at future locations of the interface. Numerical tests performed with this level-set-based method show that numerical conservation of cells is a good indicator of simulation accuracy, particularly when cusps develop in the tissue's interface. We apply this new model to several situations of curvature-controlled tissue evolutions that include fragmentation and fusion.
    Matched MeSH terms: Tissue Engineering*
  14. Tan, S.L., Selvaratnam, L., Ahmad, T.S.
    JUMMEC, 2015;18(2):1-14.
    MyJurnal
    Tendon is a dense connective tissue that connects muscle to bone. Tendon can adapt to mechanical forces passing across it, through a reciprocal relationship between its cellular components (tenocytes and tenoblasts) and the extracellular matrix (ECM). In early development, the formation of scleraxis-expressing tendon progenitor population in the sclerotome is induced by a fibroblast growth factor signal secreted by the myotome. Tendon injury has been defined as a loss of cells or ECM caused by trauma. It represents a failure of cells and matrix adaptation to mechanical loading. Injury initiates attempts of tendon to repair itself, which has been defined as replacement of damaged or lost cells and ECM by new cells or new matrices. Tendon healing generally consists of four different phases: the inflammatory, proliferation, differentiation and remodelling phases. Clinically, tendons are repaired with a variety of surgical techniques, which show various degrees of success. In order to improve the conventional tendon repair methods, current tendon tissue engineering aims to investigate a repair method which can restore tissue defects with living cells, or cell based therapy. Advances in tissue engineering techniques would potentially yield to a cell-based product that could regenerate functional tendon tissue.
    Matched MeSH terms: Tissue Engineering
  15. Muhammad Aa’zamuddin Ahmad Radzi, Nur Syamimi Mohd. Azharuddin, Abdulrezak Abdulahi Hashi, Azran Azhim, Munirah Sha’ban
    MyJurnal
    Tissue engineering (TE) research serves to overcome the major obstacles in organ transplantation. This paper summarizes the progress of TE in Malaysia. The online database of Elsevier’s SCOPUS was accessed. Publications related to TE from 1960 till 2017 were scrutinized. The results show an increasing trend in tissue engineering research and development in Malaysia. The search result identified and examined 264 original article publications. It is hoped that the outcomes of this study could serve as a point of reference for researchers on the status of TE research and development in Malaysia. The findings of this study could assist TE researchers in Malaysia to identify the strengths, weaknesses, opportunities and obstacles towards further enhancement in their activities. Consolidating, realigning and re-strategizing those initiatives should also be seen within the context of nurturing potential and budding researchers in TE.
    Matched MeSH terms: Tissue Engineering
  16. Ngadiman NHA, Noordin MY, Idris A, Kurniawan D
    Proc Inst Mech Eng H, 2017 Jul;231(7):597-616.
    PMID: 28347262 DOI: 10.1177/0954411917699021
    The potential of electrospinning process to fabricate ultrafine fibers as building blocks for tissue engineering scaffolds is well recognized. The scaffold construct produced by electrospinning process depends on the quality of the fibers. In electrospinning, material selection and parameter setting are among many factors that contribute to the quality of the ultrafine fibers, which eventually determine the performance of the tissue engineering scaffolds. The major challenge of conventional electrospun scaffolds is the nature of electrospinning process which can only produce two-dimensional electrospun mats, hence limiting their applications. Researchers have started to focus on overcoming this limitation by combining electrospinning with other techniques to fabricate three-dimensional scaffold constructs. This article reviews various polymeric materials and their composites/blends that have been successfully electrospun for tissue engineering scaffolds, their mechanical properties, and the various parameters settings that influence the fiber morphology. This review also highlights the secondary processes to electrospinning that have been used to develop three-dimensional tissue engineering scaffolds as well as the steps undertaken to overcome electrospinning limitations.
    Matched MeSH terms: Tissue Engineering/instrumentation; Tissue Engineering/methods*
  17. Fallahiarezoudar E, Ahmadipourroudposht M, Idris A, Mohd Yusof N
    Mater Sci Eng C Mater Biol Appl, 2015 Mar;48:556-65.
    PMID: 25579957 DOI: 10.1016/j.msec.2014.12.016
    The four heart valves represented in the mammalian hearts are responsible for maintaining unidirectional, non-hinder blood flow. The heart valve leaflets synchronically open and close approximately 4 million times a year and more than 3 billion times during the life. Valvular heart dysfunction is a significant cause of morbidity and mortality around the world. When one of the valves malfunctions, the medical choice is may be to replace the original valves with an artificial one. Currently, the mechanical and biological artificial valves are clinically used with some drawbacks. Tissue engineering heart valve concept represents a new technique to enhance the current model. In tissue engineering method, a three-dimensional scaffold is fabricated as the template for neo-tissue development. Appropriate cells are seeded to the matrix in vitro. Various approaches have been investigated either in scaffold biomaterials and fabrication techniques or cell source and cultivation methods. The available results of ongoing experiments indicate a promising future in this area (particularly in combination of bone marrow stem cells with synthetic scaffold), which can eliminate the need for lifelong anti-coagulation medication, durability and reoperation problems.
    Matched MeSH terms: Tissue Engineering/methods*
  18. Krishnamurithy, G.
    JUMMEC, 2013;16(2):1-6.
    MyJurnal
    The biocompatibility and similarity of hydroxyapatite (HA) to the mineral composition of the bone has made HA a potential candidate in bone tissue engineering (BTE). Over the past few decades, its application as bone graft in combination with stem cells has gained much importance. The use of bone marrow-derived mesenchymal stromal cells (MSCs) will enhance the rate and quality of defect repair. However, application of hydroxyapatite as a material to develop a 3-dimension scaffold or carrier to support MSCs in vitro is still in its infant stage. This review will discuss the source, manufacturing methods and advantages of using HA scaffolds in bone tissue engineering applications.
    Matched MeSH terms: Tissue Engineering
  19. Heikal MY, Aminuddin BS, Jeevanan J, Chen HC, Sharifah S, Ruszymah BH
    Med J Malaysia, 2008 Jul;63 Suppl A:34.
    PMID: 19024970
    Normal tracheal mucociliary clearance is the key to maintaining the health and defense of respiratory airway. Therefore the present of cilia and mucous blanket are important for tracheal epithelium to function effectively. In the present study, we prepared a tissue engineered respiratory epithelium construct (TEREC) made of autologous respiratory epithelium cells, fibroblast and fibrin from sheep owns blood which replaced a created tracheal mucosal defect. Scanning electron microscopy (SEM) showed encouraging result where immature cilia were present on the surface of TEREC. This result indicates that engineered respiratory epithelium was able to function as normal tissue.
    Matched MeSH terms: Tissue Engineering*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links