Displaying all 5 publications

Abstract:
Sort:
  1. Nda-Umar UI, Ramli I, Muhamad EN, Azri N, Taufiq-Yap YH
    Molecules, 2020 Nov 10;25(22).
    PMID: 33182532 DOI: 10.3390/molecules25225221
    In this study, an optimized mesoporous sulfonated carbon (OMSC) catalyst derived from palm kernel shell biomass was developed using template carbonization and subsequent sulfonation under different temperatures and time conditions. The OMSC catalyst was characterized using acid-base titration, elemental analysis, XRD, Raman, FTIR, XPS, TPD-NH3, TGA-DTA, SEM, and N2 adsorption-desorption analysis to reveal its properties. Results proved that the OMSC catalyst is mesoporous and amorphous in structure with improved textural, acidic, and thermal properties. Both FTIR and XPS confirmed the presence of -SO3H, -OH, and -COOH functional groups on the surface of the catalyst. The OMSC catalyst was found to be efficient in catalyzing glycerol conversion to acetin via an acetylation reaction with acetic acid within a short period of 3 h. Response surface methodology (RSM), based on a two-level, three-factor, face-centered central composite design, was used to optimize the reaction conditions. The results showed that the optimized temperature, glycerol-to-acetic acid mole ratio, and catalyst load were 126 °C, 1:10.4, and 0.45 g, respectively. Under these optimum conditions, 97% glycerol conversion (GC) and selectivities of 4.9, 27.8, and 66.5% monoacetin (MA), diacetin (DA), and triacetin (TA), respectively, were achieved and found to be close to the predicted values. Statistical analysis showed that the regression model, as well as the model terms, were significant with the predicted R2 in reasonable agreement with the adjusted R2 (<0.2). The OMSC catalyst maintained excellent performance in GC for the five reaction cycles. The selectivity to TA, the most valuable product, was not stable until the fourth cycle, attributable to the leaching of the acid sites.
    Matched MeSH terms: Triacetin
  2. Maizatul, N., Norazowa, I., Khalina, A., Yunus, W.M.Z.W., Khalisanni, K.
    MyJurnal
    A biodegradable composite (PLA/KBF blends) was prepared using melt blending technique in a brabender mixer and characterized with FTIR and TGA analyzer. Five percent of triacetin and glycerol contents were used as plasticizers to plasticise PLA matrix. KBF was treated with 4% NaOH solution, while 30 wt% of fibre loading was used constantly for all the composite samples. From the FTIR analysis, the additions of triacetin and glycerol to PLA composites did not produce any significant difference, and there were no chemical changes in both the plasticized PLA with the treated and untreated KBF, respectively. Observation done on the TGA analysis revealed that both plasticizers did improve the thermal stability of the composites, and this might be due to the modification on the fibre surfaces, which further led to the delay in the degradation of the PLA matrix and to significant stabilization effect.
    Matched MeSH terms: Triacetin
  3. Tan KT, Lee KT, Mohamed AR
    Bioresour Technol, 2010 Feb;101(3):965-9.
    PMID: 19773156 DOI: 10.1016/j.biortech.2009.09.004
    In this study, fatty acid methyl esters (FAME) have been successfully produced from transesterification reaction between triglycerides and methyl acetate, instead of alcohol. In this non-catalytic supercritical methyl acetate (SCMA) technology, triacetin which is a valuable biodiesel additive is produced as side product rather than glycerol, which has lower commercial value. Besides, the properties of the biodiesel (FAME and triacetin) were found to be superior compared to those produced from conventional catalytic reactions (FAME only). In this study, the effects of various important parameters on the yield of biodiesel were optimized by utilizing Response Surface Methodology (RSM) analysis. The mathematical model developed was found to be adequate and statistically accurate to predict the optimum yield of biodiesel. The optimum conditions were found to be 399 degrees C for reaction temperature, 30 mol/mol of methyl acetate to oil molar ratio and reaction time of 59 min to achieve 97.6% biodiesel yield.
    Matched MeSH terms: Triacetin/chemistry
  4. Kam YC, Woo KK, Ong LGA
    Molecules, 2017 Dec 08;22(12).
    PMID: 29292721 DOI: 10.3390/molecules22122106
    Lipases with unique characteristics are of value in industrial applications, especially those targeting cost-effectiveness and less downstream processes. The aims of this research were to: (i) optimize the fermentation parameters via solid state fermentation (SSF); and (ii) study the performance in hydrolysis and esterification processes of the one-step partially purified Schizophyllum commune UTARA1 lipases. Lipase was produced by cultivating S. commune UTARA1 on sugarcane bagasse (SB) with used cooking oil (UCO) via SSF and its production was optimized using Design-Expert® 7.0.0. Fractions 30% (ScLipA) and 70% (ScLipB) which contained high lipase activity were obtained by stepwise (NH₄)₂SO₄ precipitation. Crude fish oil, coconut oil and butter were used to investigate the lipase hydrolysis capabilities by a free glycerol assay. Results showed that ScLipA has affinities for long, medium and short chain triglycerides, as all the oils investigated were degraded, whereas ScLipB has affinities for long chain triglycerides as it only degrades crude fish oil. During esterification, ScLipA was able to synthesize trilaurin and triacetin. Conversely, ScLipB was specific towards the formation of 2-mono-olein and triacetin. From the results obtained, it was determined that ScLipA and ScLipB are sn-2 regioselective lipases. Hence, the one-step partial purification strategy proved to be feasible for partial purification of S. commune UTARA1 lipases that has potential use in industrial applications.
    Matched MeSH terms: Triacetin/chemistry
  5. Febriyenti, Azmin Mohd. Noor, Saringat Baei
    MyJurnal
    The objective of this research was to formulate an aerosol concentrate containing haruan (Channa
    striatus) water extract that would produce a thin film when sprayed onto a wound and could be used for wound dressing. The aerosol concentrates were formulated with various polymer and plasticiser mixtures and tested in dispersion systems. The polymers evaluated were hydroxypropyl methylcellulose (HPMC), carboxymethylcellulose sodium (CMC Sodium), acacia, tragacanth, chitosan, gelatine and gelatine (bloom 151–160), all at concentrations of 2%. The plasticisers evaluated were polyethylene glycol (PEG) 400 and 4000, glycerine, propylene glycol, and triacetin. Films were prepared from film-forming dispersions by casting techniques. Film-forming dispersions were characterised in terms of pH, density, surface tension, rheological properties, particle size distribution, and tackiness. Based on these evaluations, HPMC was chosen as the best polymer. It produced a film with the expected qualities and was easy to reproduce in the form of dispersions or as thin transparent films. Glycerine was judged as the most appropriate plasticiser because it produced the concentrate having the desired qualities and properties expected from an aerosol concentrate.
    Matched MeSH terms: Triacetin
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links