Displaying all 2 publications

Abstract:
Sort:
  1. Alzubaidi MS, Shah U, Dhia Zubaydi H, Dolaat K, Abd-Alrazaq AA, Ahmed A, et al.
    Healthcare (Basel), 2021 Jun 16;9(6).
    PMID: 34208654 DOI: 10.3390/healthcare9060740
    Background: Parkinson's Disease (PD) is a chronic neurodegenerative disorder that has been ranked second after Alzheimer's disease worldwide. Early diagnosis of PD is crucial to combat against PD to allow patients to deal with it properly. However, there is no medical test(s) available to diagnose PD conclusively. Therefore, computer-aided diagnosis (CAD) systems offered a better solution to make the necessary data-driven decisions and assist the physician. Numerous studies were conducted to propose CAD to diagnose PD in the early stages. No comprehensive reviews have been conducted to summarize the role of AI tools to combat PD. Objective: The study aimed to explore and summarize the applications of neural networks to diagnose PD. Methods: PRISMA Extension for Scoping Reviews (PRISMA-ScR) was followed to conduct this scoping review. To identify the relevant studies, both medical databases (e.g., PubMed) and technical databases (IEEE) were searched. Three reviewers carried out the study selection and extracted the data from the included studies independently. Then, the narrative approach was adopted to synthesis the extracted data. Results: Out of 1061 studies, 91 studies satisfied the eligibility criteria in this review. About half of the included studies have implemented artificial neural networks to diagnose PD. Numerous studies included focused on the freezing of gait (FoG). Biomedical voice and signal datasets were the most commonly used data types to develop and validate these models. However, MRI- and CT-scan images were also utilized in the included studies. Conclusion: Neural networks play an integral and substantial role in combating PD. Many possible applications of neural networks were identified in this review, however, most of them are limited up to research purposes.
  2. Alzubaidi M, Zubaydi HD, Bin-Salem AA, Abd-Alrazaq AA, Ahmed A, Househ M
    PMID: 34345877 DOI: 10.1016/j.cmpbup.2021.100025
    BACKGROUND: Since the onset of the COVID-19 pandemic, the world witnessed disruption on an unprecedented scale affecting our daily lives including but not limited to healthcare, business, education, and transportation. Deep Learning (DL) is a branch of Artificial intelligence (AI) applications, the recent growth of DL includes features that could be helpful in fighting the COVID-19 pandemic. Utilizing such features could support public health efforts.

    OBJECTIVE: Investigate the literature available in the use of DL technology to support dealing with the COVID-19 crisis. We summarize the literature that uses DL features to analyze datasets for the purpose of a quick COVID-19 detection.

    METHODS: This review follows PRISMA Extension for Scoping Reviews (PRISMA-ScR). We have scanned the most two commonly used databases (IEEE, ACM). Search terms were identified based on the target intervention (DL) and the target population (COVID-19). Two authors independently handled study selection and one author assigned for data extraction. A narrative approach is used to synthesize the extracted data.

    RESULTS: We retrieved 53 studies and after passing through PRISMA excluding criteria, only 17 studies are considered in this review. All studies used deep learning for detection of COVID-19 cases in early stage based on different diagnostic modalities. Convolutional Neural Network (CNN) and Transfer Learning (TL) were the most commonly used techniques.

    CONCLUSION: The included studies showed that DL techniques has significant impact on early detection of COVID-19 with high accuracy rate. However, most of the proposed methods are still in development and not tested in a clinical setting. Further investigation and collaboration are required from the research community and healthcare professionals in order to develop and standardize guidelines for use of DL in the healthcare domain.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links