MyMedR (Malaysian Medical Repository) is an open access collection of Malaysian health and biomedical research. The materials are imported from PubMed and MyJurnal. We gratefully acknowledge the permission to reuse the materials from the National Library of Medicine of the United States and the Malaysian Citation Centre. This project is funded by Academy of Family Physicians of Malaysia. The project team members are: CL Teng, CJ Ng, EM Khoo, Mastura Ismail, Abrizah Abdullah, TK Chiew, Thanaletchumi Dharmalingam.

Please note that some citations are non-Malaysian publications. Common reasons are: (1) One or more authors had a Malaysian affiliation; (2) The article abstract mentioned Malaysia; (3) The study subjects included Malay ethnic group.

To get started, use the form above to search for publications.

Explore our documentation for search tips. You can also use the Advanced Search for more complex searches.

Recently updated

  1. Sabapathy S, Nair H
    Plant Cell Rep., 1992 Jun;11(5-6):290-4.
    PMID: 24203142 DOI: 10.1007/BF00235084
    In vitro growth and multiplication of taro [Colocasia esculenta var. antiquorum cv. Keladi Birah] was improved considerably, when primary shoot apices were cultured on two modifications of Linsmaier and Skoog [1965] medium, containing 5.5 mg 1(-1) naphthaleneacetic acid and 0.2 mg 1(-1) kinetin or 1.85 mg 1(-1) naphthaleneacetic acid and 2 mg 1(-1) kinetin and supplemented with 10(-4) or 10(-3) mol·1(-1) of polyamine spermine or either of the precursors of polyamine putrescine-arginine and ornithine. Plantlets were regenerated directly from primary shoot apices, axillary buds and protocorm-like bodies [PLB]. Frequency of plantlet regeneration, rate of development and growth in height of main plantlets were enhanced by the addition of arginine and ornithine to the media. Secondary plantlet formation from axillary buds and PLB were promoted by spermine and arginine respectively.
    MeSH terms: Arginine; Kinetin; Naphthaleneacetic Acids; Ornithine; Polyamines; Putrescine; Regeneration; Spermine; Colocasia; Growth and Development
  2. Sabapathy S, Nair H
    Plant Cell Rep., 1995 May;14(8):520-4.
    PMID: 24185524 DOI: 10.1007/BF00232787
    Regeneration of plantlets from shoot apex-derived callus and "calloid" cultures of a local taro [Colocasia esculenta var. antiquorum cv. Keladi Birah] cultivar, was expedited by treatment with high levels of spermine. The total time taken, from culture of primary shoot apices on modified Linsmaier and Skoog medium supplemented with trichlorophenoxyacetic acid and kinetin, to complete plantlet regeneration, was reduced by 2-16 weeks, when the callus and "calloid" cultures were treated with 0.01, 0.1 and 1 mM spermine. Furthermore, the number of plantlets produced per gram callus increased from 25 to 55. On media supplemented with arginine and ornithine, no callus was initiated from expiants and no plantlets differentiated from pre-established callus.
    MeSH terms: Arginine; Callosities; Kinetin; Ornithine; Regeneration; Spermine; 2,4,5-Trichlorophenoxyacetic Acid; Dietary Supplements; Colocasia
  3. Chowdhury MKU, Parveez GKA, Saleh NM
    Plant Cell Rep., 1997 Feb;16(5):277-281.
    PMID: 30727662 DOI: 10.1007/BF01088280
    The efficiency of GUS (β-Glucuronidase) gene expression in embryogenic callus and young leaflets of mature and seedling palm after microprojectile bombardment with five constructs (pEmuGN, pAHC25, pAct1-F4, pGH24 and pBARGUS) was evaluated to identify the most suitable promoter(s) to use in transformation attempts in oil palm. Expression of the GUS gene driven by theEmu, Ubi1, Act1 35S orAdh1 was assayed, both histochemically and fluorometrically, from a total of 200 plates of tissues in eight independent experiments two days after bombardment. A completely randomized experimental design was used for each experiment, and the data analysed by ANOVA and Duncan's Multiple Range Test. The expression level of GUS driven by theEmu orUbi1 promoters was significantly higher than that of the Act], 35S and Adhl promoters in many experiments, and that of theAdhl was significantly lower than those of the other four promoters. Both histochemical and fluorometric data indicate that in embryogenic callus, the expression of theEmu promoter was higher than that of theUbi1 whereas in young leaflets from mature palm the Ubi1 expression was stronger. The performances of the five promoters were also tested in tobacco callus using a fluorometric GUS assay. The activity of the 35S promoter was highest, and significantly different from that of all the other promoters except theEmu, and that of theAct1 promoter was lowest. These results indicate that either theUbil orEmu promoter should facilitate the expression of desired genes in oil palm and aid in development of an efficient stable transformation system.
  4. Arokiaraj P, Yeet Yeang H, Fong Cheong K, Hamzah S, Jones H, Coomber S, et al.
    Plant Cell Rep., 1998 May;17(8):621-625.
    PMID: 30736515 DOI: 10.1007/s002990050454
    Hevea brasiliensis anther calli were genetically transformed using Agrobacterium GV2260 (p35SGUSINT) that harboured the β-glucuronidase (gus) and neomycin phosphotransferase (nptII) genes. β-Glucuronidase protein (GUS) was expressed in the leaves of kanamycin-resistant plants that were regnerated, and the presence of the gene was confirmed by Southern analysis. GUS was also observed to be expressed in the latex and more importantly in the serum fraction. Transverse sections of the leaf petiole from a transformed plant revealed GUS expression to be especially enhanced in the phloem and laticifers. GUS expression was subsequently detected in every one of 194 plants representing three successive vegetative cycles propagated from the original transformant. Transgenic Hevea could thus facilitate the continual production of foreign proteins expressed in the latex.
  5. Cheng HM, Chamley LW
    Proc. Soc. Exp. Biol. Med., 1998 Sep;218(4):277.
    PMID: 9714070
    MeSH terms: Glycoproteins/physiology*; Humans; Lipoproteins, LDL/metabolism*; Placenta/metabolism*; Trophoblasts/metabolism*; beta 2-Glycoprotein I
  6. Shah FH, Cha TS
    Plant Sci., 2000 May 29;154(2):153-160.
    PMID: 10729614
    The differential display method was used to isolate cDNAs corresponding to transcripts that accumulate during the period of lipid synthesis, 12-20 weeks after anthesis (WAA) in the mesocarp of two oil palms, Elaeis oleifera and Elaeis guineensis, Tenera. DNA-free total RNA from mesocarp and kernel of E. guineensis, Tenera and E. oleifera (15 WAA) were used to obtain differential gene expression patterns between these tissues from the two species. In this report, we describe the isolation and characterization of a specific cDNA clone, MO1 (434 bp) which was shown to be mesocarp-specific as well as species-specific for E. oleifera Sequencing of this fragment showed homology to the enzyme sesquiterpene synthase. Its longer cDNA clone, pMO1 (1072 bp), isolated from a 15-week E. oleifera mesocarp cDNA library confirmed that it encodes for sesquiterpene synthase. The complete sequence of 1976 bp was obtained using 5'RACE method. Northern hybridization showed that MO1 and pMO1 mRNA transcripts are highly expressed only in the mesocarp of E. oleifera from 5 to 20 WAA. No expression was detected in the kernel (12-17 WAA) and vegetative tissues of both species nor in the mesocarp of E. guineensis. This is the first communication to document on the isolation and characterisation of a mesocarp-and species-specific cDNA clone from oil palm.
    MeSH terms: DNA; RNA, Messenger; Sesquiterpenes; Blotting, Northern; Gene Library; DNA, Complementary; Arecaceae
  7. Singh R, Cheah SC
    Plant Cell Rep., 2000 Jul;19(8):804-809.
    PMID: 30754873 DOI: 10.1007/s002999900179
    The technique of mRNA fingerprinting was used to isolate flower-specific cDNAs in the oil palm. Differences in the RNA populations between vegetative tissue (leaf) and inflorescences at various stages of flower development were examined using 18 primer combinations. A total of 16 flower-specific cDNAs were identified, of which 15 were successfully re-amplified. Reverse Northern analysis confirmed that 8 of the 15 cDNAs appeared to truly represent differentially expressed mRNAs in flowering tissues. Northern blot analysis subsequently showed that 5 of the clones are preferentially or exclusively expressed in the flowering tissues of oil palm.
  8. Cha TS, Habib Shah F
    Plant Sci., 2001 Apr;160(5):913-923.
    PMID: 11297788
    The mRNA differential display method was used to identify and isolate cDNAs corresponding to transcripts that accumulate during the period of lipid synthesis, 12-20 weeks after anthesis (WAA) in the kernel of Elaeis guineensis, var. Tenera. We successfully isolated two cDNA clones, KT7 (312 bp) and KT8 (266 bp). Interestingly, both clones show 79% nucleotide sequence identity to each other. This suggests that both clones encode the isoforms of the same protein. We screened the kernel (15 WAA) cDNA library and isolated the clone pKT7 (587 bp) using KT7 as probe, and isolated another isoform with KT8 probe, which designated as pKT9 (900 bp). Clone pKT9 has 93% nucleotide identity to KT8 and only 46% to pKT7 in their 3'-untranslated region. All three clones displayed significant amino acid sequence identity to seed storage protein glutelin from monocotyledon and globulin from dicotyledon plants. The coding sequence of KT8 (106 bp) shows 76 and 97% identity to pKT9 and pKT7, respectively. Therefore, we suggest that clones KT8 and pKT7 are members of the same subfamily (A), while pKT9 belongs to another subfamily (B) of glutelin multigene families. Southern analysis shows that there are at least four members for the subfamily B. Northern analysis shows that these three members of the glutelin family are co-ordinately expressed and developmentally regulated during the development of the kernel. The transcripts begin to accumulate at 12 WAA, increase in 15 WAA and show a significant reduction at 17 WAA.
    MeSH terms: Amino Acid Sequence; Base Sequence; Multigene Family; Globulins; Glutens; Lipids; Nucleotides; RNA, Messenger; Seeds; Gene Library; Open Reading Frames; DNA, Complementary; Protein Isoforms; 3' Untranslated Regions; Gene Expression Profiling
  9. Tee CS, Marziah M, Tan CS, Abdullah MP
    Plant Cell Rep., 2003 Jan;21(5):452-8.
    PMID: 12789448
    Three different morphological callus types, identified as type A, B and C, and tips of in vitro inflorescences were used as target tissues for genetic transformation. Five different DNA plasmids carrying a synthetic green fluorescent protein (gfp) gene driven by different promoters, CaMV 35S, HBT, and Ubi1 were tested for the genetic transformation of Dendrobium Sonia 17. 35S-sgfp-TYG-nos (p35S) with the CaMV 35S promoter showed the highest GFP transient expression rate, while the HBT and Ubi1 promoters showed a relatively lower expression rate in all of the target tissues tested. The highest number of GFP-expressing cells was observed on day 2 post-bombardment, and the number declined gradually over the course of the next 2 weeks. Type A and B callus were found to be the best potential target tissues for genetic transformation.
    MeSH terms: Luminescent Proteins/genetics; Luminescent Proteins/metabolism; Promoter Regions, Genetic/genetics*; Recombinant Fusion Proteins/genetics; Recombinant Fusion Proteins/metabolism; Genes, Reporter/genetics; Gene Expression Regulation, Plant; Plants, Genetically Modified; Dendrobium/genetics*; Dendrobium/metabolism; Culture Techniques; Green Fluorescent Proteins
  10. Chong TM, Abdullah MA, Fadzillah NM, Lai OM, Lajis NH
    Plant Cell Rep., 2004 Jul;22(12):951-8.
    PMID: 15067428
    The effects of medium strategies [maintenance (M), intermediary (G), and production (P) medium] on cell growth, anthraquinone (AQ) production, hydrogen peroxide (H2O2) level, lipid peroxidation, and antioxidant vitamins in Morinda elliptica cell suspension cultures were investigated. These were compared with third-stage leaf and 1-month-old callus culture. With P medium strategy, cell growth at 49 g l(-1), intracellular AQ content at 42 mg g(-1) DW, and H2O2 level at 9 micromol g(-1) FW medium were the highest as compared to the others. However, the extent of lipid peroxidation at 40.4 nmol g(-1) FW and total carotenoids at 13.3 mg g(-1) FW for cultures in P medium were comparable to that in the leaf, which had registered sevenfold lower AQ and 2.2-fold lower H2O2 levels. Vitamin C content at 30-120 microg g(-1) FW in all culture systems was almost half the leaf content. On the other hand, vitamin E content was around 400-500 microg g(-1) FW in 7-day-old cultures from all medium strategies and reduced to 50-150 microg g(-1) FW on day 14 and 21; as compared to 60 microg g(-1) FW in callus and 200 microg g(-1) FW in the leaf. This study suggests that medium strategies and cell growth phase in cell culture could influence the competition between primary and secondary metabolism, oxidative stresses and antioxidative measures. When compared with the leaf metabolism, these activities are dynamic depending on the types and availability of antioxidants.
    MeSH terms: Anthraquinones/metabolism*; Antioxidants/metabolism*; Ascorbic Acid/metabolism*; Cells, Cultured; Hydrogen Peroxide/metabolism*; Vitamin E/metabolism*; Lipid Peroxidation; Plant Leaves/metabolism; Morinda/cytology*; Morinda/metabolism*
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links