Displaying publications 1 - 20 of 50 in total

  1. Roslan HA, Anji SB
    3 Biotech, 2011 Jul;1(1):27-33.
    PMID: 22558533
    Chitinase is an enzyme that catalyzes the degradation of chitin, commonly induced upon the attack of pathogens and other stresses. A cDNA (MsChi1) was isolated from Metroxylon sagu and expressed predominantly in the inflorescence tissue of M. sagu, suggesting its role in developmental processes. The chitinase cDNA was detected and isolated via differential display and rapid amplification of cDNA ends (RACE). Primers specific to M. saguchitinase were used as probes to amplify the 3'-end and 5'-end regions of chitinase cDNA. Transcript analysis showed that chitinase is expressed in inflorescence and meristem tissues but was not detected in the leaf tissue. Sequence analysis of amplified cDNA fragments of 3'-end and 5'-end regions indicated that the chitinase cDNA was successfully amplified. The M. saguchitinase cDNA isolated was approximately 1,143 bp long and corresponds to 312 predicted amino acids. Alignments of nucleotide and amino acid have grouped this chitinase to family 19 class I chitinase.
  2. Karamba KI, Ahmad SA, Zulkharnain A, Yasid NA, Ibrahim S, Shukor MY
    3 Biotech, 2018 Jan;8(1):11.
    PMID: 29259886 DOI: 10.1007/s13205-017-1025-x
    The evaluation of degradation and growth kinetics of Serratia marcescens strain AQ07 was carried out using three half-order models at all the initial concentrations of cyanide with the values of regression exceeding 0.97. The presence of varying cyanide concentrations reveals that the growth and degradation of bacteria were affected by the increase in cyanide concentration with a total halt at 700 ppm KCN after 72 h incubation. In this study, specific growth and degradation rates were found to trail the substrate inhibition kinetics. These two rates fitted well to the kinetic models of Teissier, Luong, Aiba and Heldane, while the performance of Monod model was found to be unsatisfactory. These models were used to clarify the substrate inhibition on the bacteria growth. The analyses of these models have shown that Luong model has fitted the experimental data with the highest coefficient of determination (R2) value of 0.9794 and 0.9582 with the lowest root mean square error (RMSE) value of 0.000204 and 0.001, respectively, for the specific rate of degradation and growth. It is the only model that illustrates the maximum substrate concentration (Sm) of 713.4 and empirical constant (n) of 1.516. Tessier and Aiba fitted the experimental data with a R2 value of 0.8002 and 0.7661 with low RMSE of 0.0006, respectively, for specific biodegradation rate, while having a R2 value of 0.9 and RMSE of 0.001, respectively, for specific growth rate. Haldane has the lowest R2 value of 0.67 and 0.78 for specific biodegradation and growth rate with RMSE of 0.0006 and 0.002, respectively. This indicates the level of the bacteria stability in varying concentrations of cyanide and the maximum cyanide concentration it can tolerate within a specific time period. The biokinetic constant predicted from this model demonstrates a good ability of the locally isolated bacteria in cyanide remediation in industrial effluents.
  3. Nur Asshifa MN, Zambry NS, Salwa MS, Yahya ARM
    3 Biotech, 2017 Jul;7(3):189.
    PMID: 28664380 DOI: 10.1007/s13205-017-0828-0
    Water-immiscible substrate, diesel, was supplied as the main substrate in the fermentation of Pseudomonas aeruginosa USM-AR2 producing rhamnolipid biosurfactant, in a stirred tank bioreactor. In addition to the typical gas-aqueous system, this system includes gas-hydrocarbon-aqueous phases and the presence of surfactant (rhamnolipid) in the fermentation broth. The effect of diesel dispersion on volumetric oxygen transfer coefficient, k L a, and thus oxygen transfer, was evaluated at different agitations of 400, 500 and 600 rpm. The oxygen transfer in this oil-water-surfactant system was shown to be affected by different oil dispersion at those agitation rates. The highest diesel dispersion was obtained at 500 rpm or impeller tip speed of 1.31 m/s, compared to 400 and 600 rpm, which led to the highest k L a, growth and rhamnolipid production by P. aeruginosa USM-AR2. This showed the highest substrate mixing and homogenization at this agitation speed that led to the efficient substrate utilization by the cells. The oxygen uptake rate of P. aeruginosa USM-AR2 was 5.55 mmol/L/h, which showed that even the lowest k L a (48.21 h-1) and hence OTR (57.71 mmol/L/h) obtained at 400 rpm was sufficient to fulfill the oxygen demand of the cells. The effect of rhamnolipid concentration on k L a showed that k L a increased as rhamnolipid concentration increased to 0.6 g/L before reaching a plateau. This trend was similar for all agitation rates of 400, 500 and 600 rpm, which might be due to the increase in the resistance to oxygen transfer (k L decrease) and the increase in the specific interfacial area (a).
  4. Hassan MI, Sultana N
    3 Biotech, 2017 Aug;7(4):249.
    PMID: 28714045 DOI: 10.1007/s13205-017-0889-0
    Considering the important factor of bioactive nanohydoxyapatite (nHA) to enhance osteoconductivity or bone-bonding capacity, nHA was incorporated into an electrospun polycaprolactone (PCL) membrane using electrospinning techniques. The viscosity of the PCL and nHA/PCL with different concentrations of nHA was measured and the morphology of the electrospun membranes was compared using a field emission scanning electron microscopy. The water contact angle of the nanofiber determined the wettability of the membranes of different concentrations. The surface roughness of the electrospun nanofibers fabricated from pure PCL and nHA/PCL was determined and compared using atomic force microscopy. Attenuated total reflectance Fourier transform infrared spectroscopy was used to study the chemical bonding of the composite electrospun nanofibers. Beadless nanofibers were achieved after the incorporation of nHA with a diameter of 200-700 nm. Results showed that the fiber diameter and the surface roughness of electrospun nanofibers were significantly increased after the incorporation of nHA. In contrast, the water contact angle (132° ± 3.5°) was reduced for PCL membrane after addition of 10% (w/w) nHA (112° ± 3.0°). Ultimate tensile strengths of PCL membrane and 10% (w/w) nHA/PCL membrane were 25.02 ± 2.3 and 18.5 ± 4.4 MPa. A model drug tetracycline hydrochloride was successfully loaded in the membrane and the membrane demonstrated good antibacterial effects against the growth of bacteria by showing inhibition zone for E. coli (2.53 ± 0.06 cm) and B. cereus (2.87 ± 0.06 cm).
  5. Kaiser E, Jaganathan SK, Supriyanto E, Ayyar M
    3 Biotech, 2017 Jul;7(3):174.
    PMID: 28660462 DOI: 10.1007/s13205-017-0830-6
    Atrial septal defect (ASD) constitutes 30-40% of all congenital heart diseases in adults. The most common complications in the treatment of ASD are embolization of the device and thrombosis formation. In this research, an occluding patch was developed for ASD treatment using a well-known textile technology called electrospinning. For the first time, a cardiovascular occluding patch was fabricated using medical grade polyurethane (PU) loaded with bioactive agents namely chitosan nanoparticles (Cn) and collagen (Co) which is then coated with heparin (Hp). Fourier transform infrared spectrum showed characteristic vibrations of several active constituents and changes in the absorbance due to the inclusion of active ingredients in the patch. The contact angle analysis demonstrated no significant decrease in contact angle compared to the control and the composite patches. The structure of the electrospun nanocomposite (PUCnCoHp) was examined through scanning electron microscopy. A decrease in nanofiber diameter between control PU and PUCnCoHp nanocomposite was observed. Water uptake was found to be decreased for the PUCnCoHp nanocomposite against the control. The hemocompatibility properties of the PUCnCoHp ASD occluding patch was inferred through in vitro hemocompatibility tests like activated partial thromboplastin time (APTT), prothrombin time (PT) and hemolysis assay. It was found that the PT and APTT time was significantly prolonged for the fabricated PUCnCoHp ASD occluding patch compared to the control. Likewise, the hemolysis percentage was also decreased for the PUCnCoHp ASD patch against the control. In conclusion, the developed PUCnCoHp patch demonstrates potential properties to be used for ASD occlusion.
  6. Lam MQ, Nik Mut NN, Thevarajoo S, Chen SJ, Selvaratnam C, Hussin H, et al.
    3 Biotech, 2018 Feb;8(2):104.
    PMID: 29404232 DOI: 10.1007/s13205-018-1133-2
    A halophilic bacterium,Virgibacillussp. strain CD6, was isolated from salted fish and its extracellular protease was characterized. Protease production was found to be highest when yeast extract was used as nitrogen source for growth. The protease exhibited stability at wide range of salt concentration (0-12.5%, w/v), temperatures (20-60 °C), and pH (4-10) with maximum activity at 10.0% (w/v) NaCl, 60 °C, pH 7 and 10, indicating its polyextremophilicity. The protease activity was enhanced in the presence of Mg2+, Mn2+, Cd2+, and Al3+(107-122% relative activity), and with retention of activity > 80% for all of other metal ions examined (K+, Ca2+, Cu2+, Co2+, Ni2+, Zn2+, and Fe3+). Both PMSF and EDTA inhibited protease activity, denoting serine protease and metalloprotease properties, respectively. High stability (> 70%) was demonstrated in the presence of organic solvents and detergent constituents, and the extracellular protease from strain CD6 was also found to be compatible in commercial detergents. Proteinaceous stain removal efficacy revealed that crude protease of strain CD6 could significantly enhance the performance of commercial detergent. The protease fromVirgibacillussp. strain CD6 could serve as a promising alternative for various applications, especially in detergent industry.
  7. Manogaran M, Ahmad SA, Yasid NA, Yakasai HM, Shukor MY
    3 Biotech, 2018 Feb;8(2):117.
    PMID: 29430378 DOI: 10.1007/s13205-018-1141-2
    In this novel study, we report on the use of two molybdenum-reducing bacteria with the ability to utilise the herbicide glyphosate as the phosphorus source. The bacteria reduced sodium molybdate to molybdenum blue (Mo-blue), a colloidal and insoluble product, which is less toxic. The characterisation of the molybdenum-reducing bacteria was carried out using resting cells immersed in low-phosphate molybdenum media. Two glyphosate-degrading bacteria, namelyBurkholderia vietnamiensisAQ5-12 andBurkholderiasp. AQ5-13, were able to use glyphosate as a phosphorous source to support molybdenum reduction to Mo-blue. The bacteria optimally reduced molybdenum between the pHs of 6.25 and 8. The optimum concentrations of molybdate for strainBurkholderia vietnamiensis strainAQ5-12 was observed to be between 40 and 60 mM, while forBurkholderiasp. AQ5-13, the optimum molybdate concentration occurred between 40 and 50 mM. Furthermore, 5 mM of phosphate was seen as the optimum concentration supporting molybdenum reduction for both bacteria. The optimum temperature aiding Mo-blue formation ranged from 30 to 40 °C forBurkholderia vietnamiensis strainAQ5-12, whereas forBurkholderiasp. AQ5-13, the range was from 35 to 40 °C. Glucose was the best electron donor for supporting molybdate reduction, followed by sucrose, fructose and galactose for both strains. Ammonium sulphate was the best nitrogen source in supporting molybdenum reduction. Interestingly, increasing the glyphosate concentrations beyond 100 and 300 ppm forBurkholderia vietnamiensis strainAQ5-12 andBurkholderiasp. AQ5-13, respectively, significantly inhibited molybdenum reduction. The ability of these bacteria to reduce molybdenum while degrading glyphosate is a useful process for the bioremediation of both toxicants.
  8. Purayil FT, Robert GA, Gothandam KM, Kurup SS, Subramaniam S, Cheruth AJ
    3 Biotech, 2018 Feb;8(2):109.
    PMID: 29430370 DOI: 10.1007/s13205-018-1108-3
    Nine (9) different date palm (Phoenix dactyliferaL.) cultivars from UAE, which differ in their flower timings were selected to determine the polymorphism and genetic relationship between these cultivars. Hereditary differences and interrelationships were assessed utilizing inter-simple sequence repeat (ISSR) and directed amplification of minisatellite DNA region (DAMD) primers. Analysis on eight DAMD and five ISSR markers produced total of 113 amplicon including 99 polymorphic and 14 monomorphic alleles with a polymorphic percentage of 85.45. The average polymorphic information content for the two-marker system was almost similar (DAMD, 0.445 and ISSR, 0.459). UPGMA based clustering of DAMD and ISSR revealed that mid-season cultivars, Mkh (Khlas) and MB (Barhee) grouped together to form a subcluster in both the marker systems. The genetic similarity analysis followed by clustering of the cumulative data from the DAMD and ISSR resulted in two major clusters with two early-season cultivars (ENg and Ekn), two mid-season cultivars (MKh and MB) and one late-season cultivar (Lkhs) in cluster 1, cluster 2 includes two late-season cultivars, one early-season cultivar and one mid-season cultivar. The cluster analysis of both DAMD and ISSR marker revealed that, the patterns of variation between some of the tested cultivars were similar in both DNA marker systems. Hence, the present study signifies the applicability of DAMD and ISSR marker system in detecting genetic diversity of date palm cultivars flowering at different seasons. This may facilitate the conservation and improvement of date palm cultivars in the future.
  9. Manogaran M, Shukor MY, Yasid NA, Khalil KA, Ahmad SA
    3 Biotech, 2018 Feb;8(2):108.
    PMID: 29430369 DOI: 10.1007/s13205-018-1123-4
    The herbicide glyphosate is often used to control weeds in agricultural lands. However, despite its ability to effectively kill weeds at low cost, health problems are still reported due to its toxicity level. The removal of glyphosate from the environment is usually done by microbiological process since chemical process of degradation is ineffective due to the presence of highly stable bonds. Therefore, finding glyphosate-degrading microorganisms in the soil of interest is crucial to remediate this glyphosate.Burkholderia vietnamiensisstrain AQ5-12 was found to have glyphosate-degrading ability. Optimisation of biodegradation condition was carried out utilising one factor at a time (OFAT) and response surface methodology (RSM). Five parameters including carbon and nitrogen source, pH, temperature and glyphosate concentration were optimised. Based on OFAT result, glyphosate degradation was observed to be optimum at fructose concentration of 6, 0.5 g/L ammonia sulphate, pH 6.5, temperature of 32 °C and glyphosate concentration at 100 ppm. Meanwhile, RSM resulted in a better degradation with 92.32% of 100 ppm glyphosate compared to OFAT. The bacterium was seen to tolerate up to 500 ppm glyphosate while increasing concentration results in reduced degradation and bacterial growth rate.
  10. Samad AFA, Nazaruddin N, Murad AMA, Jani J, Zainal Z, Ismail I
    3 Biotech, 2018 Mar;8(3):136.
    PMID: 29479512 DOI: 10.1007/s13205-018-1164-8
    In current era, majority of microRNA (miRNA) are being discovered through computational approaches which are more confined towards model plants. Here, for the first time, we have described the identification and characterization of novel miRNA in a non-model plant, Persicaria minor (P. minor) using computational approach. Unannotated sequences from deep sequencing were analyzed based on previous well-established parameters. Around 24 putative novel miRNAs were identified from 6,417,780 reads of the unannotated sequence which represented 11 unique putative miRNA sequences. PsRobot target prediction tool was deployed to identify the target transcripts of putative novel miRNAs. Most of the predicted target transcripts (mRNAs) were known to be involved in plant development and stress responses. Gene ontology showed that majority of the putative novel miRNA targets involved in cellular component (69.07%), followed by molecular function (30.08%) and biological process (0.85%). Out of 11 unique putative miRNAs, 7 miRNAs were validated through semi-quantitative PCR. These novel miRNAs discoveries in P. minor may develop and update the current public miRNA database.
  11. Ismail NZ, Arsad H, Samian MR, Hamdan MR, Othman AS
    3 Biotech, 2018 Jan;8(1):62.
    PMID: 29354373 DOI: 10.1007/s13205-018-1092-7
    This study was conducted to determine the feasibility of using three plastid DNA regions (matK, trnH-psbA, and rbcL) as DNA barcodes to identify the medicinal plant Clinacanthus nutans. In this study, C. nutans was collected at several different locations. Total genomic DNA was extracted, amplified by polymerase chain reaction (PCR), and sequenced using matK, trnH-psbA, and rbcL, primers. DNA sequences generated from PCR were submitted to the National Center for Biotechnology Information's (NCBI) GenBank. Identification of C. nutans was carried out using NCBI's Basic Local Alignment Search Tool (BLAST). The rbcL and trnH-psbA regions successfully identified C. nutans with sequencing rates of 100% through BLAST identification. Molecular Evolutionary Genetics Analysis (MEGA) 6.0 was used to analyze interspecific and intraspecific divergence of plastid DNA sequences. rbcL and matK exhibited the lowest average interspecific distance (0.0487 and 0.0963, respectively), whereas trnH-psbA exhibited the highest average interspecific distance (0.2029). The R package Spider revealed that trnH-psbA correctly identified Barcode of Life Data System (BOLD) 96%, best close match 79%, and near neighbor 100% of the species, compared to matK (BOLD 72%; best close match 64%; near neighbor 78%) and rbcL (BOLD 77%; best close match 62%; near neighbor 88%). These results indicate that trnH-psbA is very effective at identifying C. nutans, as it performed well in discriminating species in Acanthaceae.
  12. Riyadi FA, Alam MZ, Salleh MN, Salleh HM
    3 Biotech, 2017 Oct;7(5):300.
    PMID: 28884067 DOI: 10.1007/s13205-017-0932-1
    This study enhanced the production of thermostable organic solvent-tolerant (TS-OST) lipase by locally isolated thermotolerant Rhizopus sp. strain using solid-state fermentation (SSF) of palm kernel cake (PKC). The optimum conditions were achieved using a series of statistical approaches. The cultivation parameters, which include fermentation time, moisture content, temperature, pH, inoculum size, various carbon and nitrogen sources, as well as other supplements, were initially screened by the definitive screening design, and one-factor-at-a-time using PKC as the basal medium. Three significant factors (olive oil concentration, pH, and inoculum size) were further optimized using face-centred central composite design. The results indicated a successful and significant improvement of lipase activity by almost two-fold compared to the initial screening production. The findings showed that the optimal conditions were 2% (v/w) inoculum size, 2% (v/w) olive oil, 0.6% (w/w) peptone, 2% (v/w) ethanol, 70% moisture content at initial pH 10.0 and 45 °C within 72 h of fermentation. Process optimization resulted in maximum lipase activity of 58.63 U/gram dry solids (gds). The analysis of variance showed that the statistical model was significant (p value <0.0001) and reliable with a high value of R2 (0.98) and adjusted R2 (0.96). This indicates a better correlation between the actual and predicted responses of lipase production. By considering this study, the low-cost PKC through SSF appears to be promising in the utilization of agro-industrial waste for TS-OST lipase production. This is because satisfactory enzyme activity could be attained that promises industrial applications.
  13. Adzitey F, Ali GR, Huda N, Ahmad R
    3 Biotech, 2013 Dec;3(6):521-527.
    PMID: 28324423 DOI: 10.1007/s13205-013-0115-7
    Salmonella species are important foodborne pathogens that can cause illness and death in humans. The objective of this study was to determine the genetic relatedness of 115 Salmonella strains isolated from ducks and their environment using random amplified polymorphic deoxyribonucleic acid (RAPD). The analysis of Salmonella strains by RAPD produced DNA fingerprints of different sizes for differentiation purposes, and cluster analysis at a coefficient of 0.85 grouped the Salmonella strains into various clusters and singletons. S. Typhimurium were grouped into nine clusters and ten singletons, S. Hadar were grouped into seven clusters and nine singletons, S. Enteritidis were grouped into four clusters and five singletons, S. Braenderup were grouped into five clusters and four singletons, S. Albany were grouped into two clusters and seven singletons, and S. Derby were grouped into two clusters and four singletons at a coefficient of 0.85 with discriminatory index (D) ranging from 0.879 to 0.957. With the exception of S. Typhimurium strains which were grouped into three major groups (genotypes) by RAPD analysis, the rest were grouped into two major genotypes. RAPD was a useful genotyping tool for determining the genetic relatedness of the duck Salmonella strains. Comparison of the genetic relatedness among foodborne pathogens and their sources of isolation are important to trace their source and possibly the source of human infection.
  14. Salihu A, Abbas O, Sallau AB, Alam MZ
    3 Biotech, 2015 Dec;5(6):1101-1106.
    PMID: 28324400 DOI: 10.1007/s13205-015-0294-5
    Different agricultural residues were considered in this study for their ability to support cellulolytic enzyme production by Aspergillus niger. A total of eleven agricultural residues including finger millet hulls, sorghum hulls, soybean hulls, groundnut husk, banana peels, corn stalk, cassava peels, sugarcane bagasse, saw dust, rice straw and sheanut cake were subjected to three pretreatment (acid, alkali and oxidative) methods. All the residues supported the growth and production of cellulases by A. niger after 96 h of incubation. Maximum cellulase production was found in alkali-treated soybean hulls with CMCase, FPase and β-glucosidase yields of 9.91 ± 0.04, 6.20 ± 0.13 and 5.69 ± 0.29 U/g, respectively. Further studies in assessing the potential of soybean hulls are being considered to optimize the medium composition and process parameters for enhanced cellulase production.
  15. Gantait S, Debnath S, Nasim Ali M
    3 Biotech, 2014 Dec;4(6):563-578.
    PMID: 28324311 DOI: 10.1007/s13205-014-0218-9
    There is an ample genetic diversity of plants with medicinal importance around the globe and this pool of genetic variation serves as the base for selection as well as for plant improvement. Thus, identification, characterization and documentation of the gene pool of medicinal plants are essential for this purpose. Genomic information of many a medicinal plant species has increased rapidly since the past decade and genetic resources available for domestication and improvement programs include genome sequencing, expressed sequence tags sequencing, transcript profiling, gene transmit, molecular markers in favor of mapping and breeding. In recent years, multiple endeavors have been undertaken for genomic characterization of medicinal plant species with the aid of molecular markers for sustainable utilization of gene pool, its conservation and future studies. Recent advancement in genomics is so fast that only some researches have been published till date and to a large extent documentation is restricted to electronic resources. Whole genome profiling of the identified medicinal plant species, carried out by several researchers, based on the DNA fingerprinting, is well documented in the present review. This review will facilitate preparing a database of the widely used, economically important medicinal plant species, based on their genomic organization.
  16. Hafshejani MK, Ogugbue CJ, Morad N
    3 Biotech, 2014 Dec;4(6):605-619.
    PMID: 28324306 DOI: 10.1007/s13205-013-0192-7
    The decolorization and degradation of Direct Blue 71 were investigated using a mono culture of Pseudomonas aeruginosa. The bacterium was able to decolorize the dye medium to 70.43 % within 48 h under microaerophilic conditions. The medium was then aerated for 24 h to promote the biodegradation of the aromatic amines generated from azo bond cleavage. Reduction in total organic carbon in dye medium was 42.58 % in the microaerophilic stage and 78.39 % in the aerobic stage. The degradation metabolites formed were studied using UV-vis techniques, high performance liquid chromatography, Fourier transform infra red spectroscopy and nuclear magnetic resonance spectroscopy analysis. Data obtained provide evidence for the formation of aromatic amines and their subsequent oxidative biodegradation by a single strain of P. aeruginosa during successive microaerophilic/aerobic stages in the same flask. The influence of incubation temperature (20-45 °C), medium pH (5-10) and initial dye concentration (25-150 mg/L) on decolorization was evaluated to greatly influence decolorization extent. The optimal decolorization conditions were determined by response surface methodology based on three-variable central composite design to obtain maximum decolorization and to determine the significance and interaction effect of the variables on decolorization. The optimal conditions of response were found to be 35.15 °C, pH 8.01 and 49.95 mg/L dye concentration giving an experimental decolorization value of 84.80 %. Very high regression coefficient between the variables and the response (R(2) = 0.9624) indicated a good evaluation of experimental data by polynomial regression model.
  17. Yeasmin L, Ali MN, Gantait S, Chakraborty S
    3 Biotech, 2015 Feb;5(1):1-11.
    PMID: 28324361 DOI: 10.1007/s13205-014-0201-5
    Genetic diversity represents the heritable variation both within and among populations of organisms, and in the context of this paper, among bamboo species. Bamboo is an economically important member of the grass family Poaceae, under the subfamily Bambusoideae. India has the second largest bamboo reserve in Asia after China. It is commonly known as "poor man's timber", keeping in mind the variety of its end use from cradle to coffin. There is a wide genetic diversity of bamboo around the globe and this pool of genetic variation serves as the base for selection as well as for plant improvement. Thus, the identification, characterization and documentation of genetic diversity of bamboo are essential for this purpose. During recent years, multiple endeavors have been undertaken for characterization of bamboo species with the aid of molecular markers for sustainable utilization of genetic diversity, its conservation and future studies. Genetic diversity assessments among the identified bamboo species, carried out based on the DNA fingerprinting profiles, either independently or in combination with morphological traits by several researchers, are documented in the present review. This review will pave the way to prepare the database of prevalent bamboo species based on their molecular characterization.
  18. Adzitey F, Huda N, Ali GR
    3 Biotech, 2013 Apr;3(2):97-107.
    PMID: 28324565 DOI: 10.1007/s13205-012-0074-4
    In recent times, several foodborne pathogens have become important and a threat to public health. Surveillance studies have provided data and a better understanding into the existence and spread of foodborne pathogens. The application of molecular techniques for detecting and typing of foodborne pathogens in surveillance studies provide reliable epidemiological data for tracing the source of human infections. A wide range of molecular techniques (including pulsed field gel electrophoresis, multilocus sequence typing, random amplified polymorphism deoxyribonucleic acid, repetitive extragenic palindromic, deoxyribonucleic acid sequencing, multiplex polymerase chain reaction and many more) have been used for detecting, speciating, typing, classifying and/or characterizing foodborne pathogens of great significance to humans. Farm animals including chickens, cattle, sheep, goats and pigs, and others (such as domestic and wild animals) have been reported to be primary reservoirs for foodborne pathogens. The consumption of contaminated poultry meats or products has been considered to be the leading source of human foodborne infections. Ducks like other farm animals are important source of foodborne pathogens and have been implicated in some human foodborne illnesses and deaths. Nonetheless, few studies have been conducted to explore the potential of ducks in causing foodborne outbreaks, diseases and its consequences. This review highlights some common molecular techniques, their advantages and those that have been applied to pathogens isolated from ducks and their related sources.
  19. Karim KMR, Husaini A, Sing NN, Sinang FM, Roslan HA, Hussain H
    3 Biotech, 2018 Apr;8(4):204.
    PMID: 29607285 DOI: 10.1007/s13205-018-1225-z
    In this study, an alpha-amylase enzyme from a locally isolatedAspergillus flavusNSH9 was purified and characterized. The extracellular α-amylase was purified by ammonium sulfate precipitation and anion-exchange chromatography at a final yield of 2.55-fold and recovery of 11.73%. The molecular mass of the purified α-amylase was estimated to be 54 kDa using SDS-PAGE and the enzyme exhibited optimal catalytic activity at pH 5.0 and temperature of 50 °C. The enzyme was also thermally stable at 50 °C, with 87% residual activity after 60 min. As a metalloenzymes containing calcium, the purified α-amylase showed significantly increased enzyme activity in the presence of Ca2+ions. Further gene isolation and characterization shows that the α-amylase gene ofA. flavusNSH9 contained eight introns and an open reading frame that encodes for 499 amino acids with the first 21 amino acids presumed to be a signal peptide. Analysis of the deduced peptide sequence showed the presence of three conserved catalytic residues of α-amylase, two Ca2+-binding sites, seven conserved peptide sequences, and several other properties that indicates the protein belongs to glycosyl hydrolase family 13 capable of acting on α-1,4-bonds only. Based on sequence similarity, the deduced peptide sequence ofA. flavusNSH9 α-amylase was also found to carry two potential surface/secondary-binding site (SBS) residues (Trp 237 and Tyr 409) that might be playing crucial roles in both the enzyme activity and also the binding of starch granules.
  20. Mohamad Ikubar MR, Abdul Manan M, Md Salleh M, Yahya A
    3 Biotech, 2018 May;8(5):259.
    PMID: 29765817 DOI: 10.1007/s13205-018-1268-1
    In current practice, oil palm frond leaflets and stems are re-used for soil nutrient recycling, while the petioles are typically burned. Frond petioles have high commercialization value, attributed to high lignocellulose fiber content and abundant of juice containing free reducing sugars. Pressed petiole fiber is the subject of interest in this study for the production of lignocellulolytic enzyme. The initial characterization showed the combination of 0.125 mm frond particle size and 60% moisture content provided a surface area of 42.3 m2/g, porosity of 12.8%, and density of 1.2 g/cm3, which facilitated fungal solid-state fermentation. Among the several species of Aspergillus and Trichoderma tested, Aspergillus awamori MMS4 yielded the highest xylanase (109 IU/g) and cellulase (12 IU/g), while Trichoderma virens UKM1 yielded the highest lignin peroxidase (222 IU/g). Crude enzyme cocktail also contained various sugar residues, mainly glucose and xylose (0.1-0.4 g/L), from the hydrolysis of cellulose and hemicellulose. FT-IR analysis of the fermented petioles observed reduction in cellulose crystallinity (I900/1098), cellulose-lignin (I900/1511), and lignin-hemicellulose (I1511/1738) linkages. The study demonstrated successful bioconversion of chemically untreated frond petioles into lignin peroxidase and xylanase-rich enzyme cocktail under SSF condition.
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links