Composites from carbon fibre reinforced polymers (CFRPs) play a significant role in modern manufacturing. They are typically used in aerospace and other industries that require high strength-to-weight ratios. Composite machining, however, remains a challenging job and sometimes is hampered by poor efficiency. Despite considerable research being conducted over the past few years on the machining of composite materials, the material nevertheless suffers from delamination, fibre loss, and imperfect finishing of the fuselage. Laser technology is becoming increasingly popular as an alternative approach to cutting and drilling composites. Experiments have been conducted with a CFRP thickness of 25.4 mm using fibre laser to test the effect of the machining parameters on the primary performance measurements. In this study, different machining criteria are used to assess the fibre laser ability of thick CFRP composites for drilling operation. The experimental findings revealed that a fibre laser is capable of penetrating a thick CFRP to a depth of 22 mm by using a novel drilling procedure.
Carbon fibre reinforced polymer composites (CFRPs) can be costly to manufacture, but they are typically used anywhere a high strength-to-weight ratio and a high steadiness (rigidity) are needed in many industrial applications, particularly in aerospace. Drilling composites with a laser tends to be a feasible method since one of the composite phases is often in the form of a polymer, and polymers in general have a very high absorption coefficient for infrared radiation. The feasibility of sequential laser-mechanical drilling for a thick CFRP is discussed in this article. A 1 kW fibre laser was chosen as a pre-drilling instrument (or initial stage), and mechanical drilling was the final step. The sequential drilling method dropped the overall thrust and torque by an average of 61%, which greatly increased the productivity and reduced the mechanical stress on the cutting tool while also increasing the lifespan of the bit. The sequential drilling (i.e., laser 8 mm and mechanical 8 mm) for both drill bits (i.e., 2- and 3-flute uncoated tungsten carbide) and the laser pre-drilling techniques has demonstrated the highest delamination factor (SFDSR) ratios. A new laser-mechanical sequence drilling technique is thus established, assessed, and tested when thick CFRP composites are drilled.
Carbon fibre-reinforced polymer (CFRP) composite materials play an increasingly important role in modern manufacturing, and they are among the more prominent materials used in aircraft manufacturing today. However, CFRP is highly prone to delamination and other damage when drilled due to it being extremely strong with a good strength-to-weight ratio and high thermal conductivity. Because of this problem and CFRP's growing importance in aircraft manufacture, research has focused on the entry and exit holes as indicators of damage occurrence during drilling of screws, rivets, and other types of holes. The inside of the hole was neglected in past research and a proper way to quantify the internal side of a hole by combining the entry and exit hole should be included. To fill this gap and improve the use of CFRP, this paper reports a novel technique to measure the holes by using the extension of the adjusted delamination factor (SFDSR) for drilling thick CFRP composites in order to establish the influence of machining input variables on key output measures, i.e., delamination and other damages. The experimental results showed a significant difference in interpretation of the damage during the analysis. Improvement was made by providing better perspectives of identifying hole defects.
Particleboard is not entirely a wood replacement but a particular material with its properties, making it more effective at different times than heavy or solid wood. The world's biggest concern is environmental problems with formaldehyde as a particulate board binder that can lead to human carcinogenic agents. A cradle-to-gate life cycle assessment (LCA) of particleboard production was performed using openLCA software. The impact assessment was carried out according to the software's features. This preliminary investigation aims to analyze the chemical composition of particleboard and identify its environmental impact. The Fourier-transform infrared spectroscopy (FTIR) system was used to track the functional group of aliphatic hydrocarbons, inorganic phosphates, and main aliphatic alcohols found in particleboards made in Malaysia. Based on the FTIR results, aliphatic groups were found in numerous aggravates that the spectroscopic infrared was likely to experience. The most important vibrational modes were C-H, at approximately 3000 cm-1, and -CH deformations around 1460 cm-1 and 1380 cm-1. Eight effect groups demonstrated that 100% of the input and all analyses produced the same relative outcome. The life cycle of a product is determined by pollution of the air, water, and soil. Thus, particleboard has a minimal impact on the environment, except for global warming.