OBJECTIVE: To design and evaluate a molecular diagnostic tool for detection and identification of all currently recognized and potentially future emergent CoVs from the Orthocoronavirinae subfamily.
STUDY DESIGN AND RESULTS: We designed a semi-nested, reverse transcription RT-PCR assay based upon 38 published genome sequences of human and animal CoVs. We evaluated this assay with 14 human and animal CoVs and 11 other non-CoV respiratory viruses. Through sequencing the assay's target amplicon, the assay correctly identified each of the CoVs; no cross-reactivity with 11 common respiratory viruses was observed. The limits of detection ranged from 4 to 4 × 102 copies/reaction, depending on the CoV species tested. To assess the assay's clinical performance, we tested a large panel of previously studied specimens: 192 human respiratory specimens from pneumonia patients, 5 clinical specimens from COVID-19 patients, 81 poultry oral secretion specimens, 109 pig slurry specimens, and 31 aerosol samples from a live bird market. The amplicons of all RT-PCR-positive samples were confirmed by Sanger sequencing. Our assay performed well with all tested specimens across all sample types.
CONCLUSIONS: This assay can be used for detection and identification of all previously recognized CoVs, including SARS-CoV-2, and potentially any emergent CoVs in the Orthocoronavirinae subfamily.
METHODS: To better understand the burden of disease and associated risk factors, we evaluated 147 patients presenting with clinical leptospirosis to local hospitals in Sarawak, Malaysia for the presence of Leptospira and associated antibodies. Sera and urine specimens collected during the acute illness phase were assessed via a commercially available rapid diagnostic test (Leptorapide, Linnodee Ltd., Antrim, Northern Ireland), an ELISA IgM assay (Leptospira IgM ELISA, PanBio, Queensland, Australia) and a pan-Leptospira real-time PCR (qPCR) assay to estimate disease prevalence and diagnostic accuracy of each method. Microagglutination testing was performed on a subset of samples.
RESULTS: Overall, 45 out of 147 patients (30.6%) showed evidence of leptospires through qPCR in either one or both sera (20 patients) or urine (33 patients), and an additional ten (6.8%) were considered positive through serological testing, for an overall prevalence of 37.4% within the study population. However, each diagnostic method individually yielded disparate prevalence estimates: rapid test 42.2% for sera and 30.5% for urine, ELISA 15.0% for sera, qPCR 13.8% for sera and 23.4% for urine. Molecular characterization of a subset of positive samples by conventional PCR identified the bacterial species as Leptospira interrogans in 4 specimens. A multivariate risk factor analysis for the outcome of leptospirosis identified having completed primary school (OR = 2.5; 95 CI% 1.0-6.4) and weekly clothes-washing in local rivers (OR = 10.6; 95 CI% 1.4-214.8) with increased likelihood of leptospirosis when compared with those who had not.
CONCLUSION: Overall, the data suggest a relatively high prevalence of leptospirosis in the study population. The low sensitivities of the rapid diagnostic test and ELISA assay against qPCR highlight a need for better screening tools.