Displaying all 4 publications

Abstract:
Sort:
  1. Ullah MZ, Awais MM, Akhtar M, Anwar MI, Navid MT, Khan I, et al.
    Trop Biomed, 2018 Dec 01;35(4):1028-1040.
    PMID: 33601850
    Toxoplasmosis is a protozoal infection of zoonotic potential with worldwide geographical distribution which affects nearly all warm-blooded animals including mammals and birds. Keeping in view, this study was conducted to determine the seroprevalence of toxoplasmosis along with associated risk factors and its haematological impacts in small ruminants of district Multan, Pakistan. In this study, a total of 250 sera samples collected from sheep (n=125) and goats (n=125) from three tehsils of Multan were examined using commercially available Latex agglutination test kit for the presence of anti-T. gondii antibodies. The haematological profiles of Toxoplasma seropositive and seronegative animals were determined by using automated haematology analyser. Overall seroprevalence of toxoplasmosis in small ruminants was 42.80% with a higher prevalence rate (44.80%) in sheep as compared to goats (40.80%). Sex, existence of co-morbid conditions, feeding pattern and presence of pet cats and dogs were identified as significant (P<0.05) risk factors associated with the presence of antibodies against toxoplasmosis. The breed was found to be a significant (P=0.026) risk factor for the seroprevalence of toxoplasmosis in goats but not in sheep. Haematological analysis revealed significantly altered leukocytic counts (P<0.05) in seropositive sheep and goats as compared to seronegative ones. Our findings showed that small ruminants of the Multan District in Pakistan are toxoplasma seropositive and may pose a serious threat of public health concern in the region.
  2. Mousa MA, Abdullah JY, Jamayet NB, El-Anwar MI, Ganji KK, Alam MK, et al.
    Biomed Res Int, 2021;2021:5699962.
    PMID: 34485518 DOI: 10.1155/2021/5699962
    The present study was aimed at reviewing the studies that used finite element analysis (FEA) to estimate the biomechanical stress arising in removable partial dentures (RPDs) and how to optimize it. A literature survey was conducted for the English full-text articles, which used only FEA to estimate the stress developed in RPDs from Jan 2000 to May 2021. In RPDs, the retaining and supporting structures are subjected to dynamic loads during insertion and removal of the prosthesis as well as during function. The majority of stresses in free-end saddle (FES) RPDs are concentrated in the shoulder of the clasp, the horizontal curvature of the gingival approaching clasp, and the part of the major connector next to terminal abutments. Clasps fabricated from flexible materials were beneficial to eliminate the stress in the abutment, while rigid materials were preferred for major connectors to eliminate the displacement of the prosthesis. In implant-assisted RPD, the implant receive the majority of the load, thereby reducing the stress on the abutment and reducing the displacement of the prosthesis. The amount of stress in the implant decreases with zero or minimal angulation, using long and wide implants, and when the implants are placed in the first molar area.
  3. Mousa MA, Husein A, El-Anwar MI, Yusoff N, Abdullah JY
    J Prosthet Dent, 2024 Jul 23.
    PMID: 39048390 DOI: 10.1016/j.prosdent.2024.07.011
    STATEMENT OF PROBLEM: Studies on the biomechanics of obturators in the currently used designs of Aramany class I defect are lacking. Also, modifications of the designs presently used in unilateral palatal defects are needed to produce a prosthesis with more retention and less stress on the abutments.

    PURPOSE: The purpose of part I of this study was to differentiate among Aramany class I obturators of 4 designs regarding retention and associated stress using numerical and experimental methods.

    MATERIAL AND METHODS: Four finite element models and 36 different base obturators were fabricated and divided into 9 acrylic resin bases retained with Adams clasps and 9 linear, 9 tripodal, and 9 fully tripodal design obturators from casts obtained from a scanned skull. After modification, the prostheses were fabricated on the casts obtained from a 3-dimensionally printed cast. The retention was evaluated, and the data were collected and analyzed using a statistical software program (α=.05). The displacement and associated stress in the assorted casts were compared by using 5-N displacing force at 3 points using finite element analysis. The quantitative assessment was made by measuring the displacement and von Mises stress distribution on the prostheses and their supporting structures. The qualitative analysis was done by using a visual color mapping to depict stress location and intensity.

    RESULTS: No significant differences were found between fully tripodal (4.478 ±2.303 MPa) and tripodal obturators (4.478 ±2.286 MPa; P=.153), although fully tripodal showed more resistance to anterior displacement (4.522 ±0.979 and 3.553 ±1.58 MPa for fully tripodal and tripodal designs, respectively; P=.007), and tripodal obturators produced more resistance to middle displacement (5.441 ±1.778 and 2.784 ±0.432 MPa for tripodal and fully tripodal design respectively; P=.001). The fully tripodal obturator showed more retention (3.736 ±1.182 MPa) than the linear one (2.493 ±1.052 MPa; P=.001). The maxillary central incisor was the most stressed abutment, followed by the lateral incisor, while the second molar was the least.

    CONCLUSIONS: Regarding retention, the fully tripodal obturator produces retention comparable with the tripodal and significantly more than the linear. Acrylic resin prostheses retained with Adams clasps may be similar to metal-based prostheses regarding retention and stress distribution on the supporting structures.

  4. Mousa MA, Husein A, El-Anwar MI, Ariffin A, Abdullah JY
    J Prosthet Dent, 2024 Sep 02.
    PMID: 39227212 DOI: 10.1016/j.prosdent.2024.07.042
    STATEMENT OF PROBLEM: Evidence regarding stress evaluations of removable obturators with Aramany class I defects is lacking. Whether the stress distribution on Aramany class I prostheses can be improved by modifying the currently used designs is also unclear.

    PURPOSE: The purpose of part II of this study was to evaluate the stress distribution in different designs of Aramany class I obturators using finite element analysis (FEA) and photoelastic stress analysis.

    MATERIAL AND METHODS: Four finite element and 8 photoelastic models, including 2 acrylic resin base obturators retained with 2 Adams clasps, 2 linear, 2 tripodal, and 2 fully tripodal design obturators, were used in this study. The frameworks were fabricated on the casts obtained from a modified printed model. Vertical and oblique loads were applied on 2 points (anterior and posterior) of the models. The quantitative measurement was done by measuring the fringe orders and von Mises values to compare the influences of occlusal forces on the obturator components and their supporting structures. The qualitative evaluation was done by visual color mapping to identify the stress concentration.

    RESULTS: In the photoelastic analysis, the anterior abutments of the tripodal showed the highest stress, followed by the fully tripodal obturators, while, in FEA, the anterior abutments of the linear design received the most in both vertical and oblique load. The central incisor received the most stress in photoelastic (3 or more fringe orders) and FEA (687.3 and 150.1 MPa for vertical and oblique loads, respectively), followed by the lateral incisors. Upon posterior loading, the base of the defect of the linear design demonstrated the most stress in photoelastic (3 or more fringes) and FEA (94.3 and 130.5 MPa for vertical and oblique loads, respectively). The acrylic resin base obturator retained with Adams clasps demonstrated the lowest stress distribution in abutments and their supporting bone upon anterior and posterior loads.

    CONCLUSIONS: Upon vertical and oblique load application, the fully tripodal design was comparable with the tripodal in terms of stress distribution. Both designs were better than the linear in response to the same loading. The stress was concentrated at the anterior palatal part of the obturator, the base of the defect, and the junction of the metal and acrylic resin part of the prostheses upon anterior and posterior loading, respectively.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links