Reproductive carrier screening started in some countries in the 1970s for hemoglobinopathies and Tay-Sachs disease. Cystic fibrosis carrier screening became possible in the late 1980s and with technical advances, screening of an ever increasing number of genes has become possible. The goal of carrier screening is to inform people about their risk of having children with autosomal recessive and X-linked recessive disorders, to allow for informed decision making about reproductive options. The consequence may be a decrease in the birth prevalence of these conditions, which has occurred in several countries for some conditions. Different programs target different groups (high school, premarital, couples before conception, couples attending fertility clinics, and pregnant women) as does the governance structure (public health initiative and user pays). Ancestry-based offers of screening are being replaced by expanded carrier screening panels with multiple genes that is independent of ancestry. This review describes screening in Australia, Cyprus, Israel, Italy, Malaysia, the Netherlands, Saudi Arabia, the United Kingdom, and the United States. It provides an insight into the enormous variability in how reproductive carrier screening is offered across the globe. This largely relates to geographical variation in carrier frequencies of genetic conditions and local health care, financial, cultural, and religious factors.
We present results from the OP3 campaign in Sabah during 2008 that allow us to study the impact of local emission changes over Borneo on atmospheric composition at the regional and wider scale. OP3 constituent data provide an important constraint on model performance. Treatment of boundary layer processes is highlighted as an important area of model uncertainty. Model studies of land-use change confirm earlier work, indicating that further changes to intensive oil palm agriculture in South East Asia, and the tropics in general, could have important impacts on air quality, with the biggest factor being the concomitant changes in NO(x) emissions. With the model scenarios used here, local increases in ozone of around 50 per cent could occur. We also report measurements of short-lived brominated compounds around Sabah suggesting that oceanic (and, especially, coastal) emission sources dominate locally. The concentration of bromine in short-lived halocarbons measured at the surface during OP3 amounted to about 7 ppt, setting an upper limit on the amount of these species that can reach the lower stratosphere.