The ABC and ACMG variant classification systems were compared by asking mainly European clinical laboratories to classify variants in 10 challenging cases using both systems, and to state if the variant in question would be reported as a relevant result or not as a measure of clinical utility. In contrast to the ABC system, the ACMG system was not made to guide variant reporting but to determine the likelihood of pathogenicity. Nevertheless, this comparison is justified since the ACMG class determines variant reporting in many laboratories. Forty-three laboratories participated in the survey. In seven cases, the classification system used did not influence the reporting likelihood when variants labeled as "maybe report" after ACMG-based classification were included. In three cases of population frequent but disease-associated variants, there was a difference in favor of reporting after ABC classification. A possible reason is that ABC step C (standard variant comments) allows a variant to be reported in one clinical setting but not another, e.g., based on Bayesian-based likelihood calculation of clinical relevance. Finally, the selection of ACMG criteria was compared between 36 laboratories. When excluding criteria used by less than four laboratories (<10%), the average concordance rate was 46%. Taken together, ABC-based classification is more clear-cut than ACMG-based classification since molecular and clinical information is handled separately, and variant reporting can be adapted to the clinical question and phenotype. Furthermore, variants do not get a clinically inappropriate label, like pathogenic when not pathogenic in a clinical context, or variant of unknown significance when the significance is known.
Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.