The COVID-19 pandemic has affected not only human health and economies but also the environment due to the large volume of waste in the form of discarded personal protective equipment. The remarkable increase in the global usage of face masks, which mainly contain polypropylene, and improper waste management have led to a serious environmental challenge called microplastic pollution. Potential practices for waste management related to waste valorization of discarded face masks as the major type of waste during the COVID-19 pandemic are explored in this study. Recommendations based on governmental practices, situation of state facilities, and societal awareness and engagement applicable to emergency (including COVID-19 pandemic) and postpandemic scenarios are offered while considering potential solutions and available waste management practices in different countries during emergency conditions. However, multicriteria decision making for a country must determine the optimal solution for waste management on the basis of all affecting factors. Awareness of scientific, governments, and communities worldwide will successfully eradicate this important environmental issue.
Increasing demand on heating, ventilation, and air-conditioning (HVAC) systems and their importance, as the respiratory system of buildings, in developing and spreading various microbial contaminations and diseases with their huge global energy consumption share have forced researchers, industries, and policymakers to focus on improving the sustainability of HVAC systems. Understanding and considering various parameters related to the sustainability of new and existing HVAC systems as the respiratory system of buildings are vital to providing healthy, energy-efficient, and economical options for various building types. However, the greatest opportunities for improving the sustainability of HVAC systems exist at the design stage of new facilities and the retrofitting of existing equipment. Considering the high available percentage of existing HVAC systems globally reveals the importance of their retrofitting. The attempt has been made to gather all important parameters that affect decision-making to select the optimum HVAC system development considerations among the various opportunities that are available for sustainability improvement.