Displaying all 2 publications

Abstract:
Sort:
  1. Porwal P, Pachade S, Kokare M, Deshmukh G, Son J, Bae W, et al.
    Med Image Anal, 2020 01;59:101561.
    PMID: 31671320 DOI: 10.1016/j.media.2019.101561
    Diabetic Retinopathy (DR) is the most common cause of avoidable vision loss, predominantly affecting the working-age population across the globe. Screening for DR, coupled with timely consultation and treatment, is a globally trusted policy to avoid vision loss. However, implementation of DR screening programs is challenging due to the scarcity of medical professionals able to screen a growing global diabetic population at risk for DR. Computer-aided disease diagnosis in retinal image analysis could provide a sustainable approach for such large-scale screening effort. The recent scientific advances in computing capacity and machine learning approaches provide an avenue for biomedical scientists to reach this goal. Aiming to advance the state-of-the-art in automatic DR diagnosis, a grand challenge on "Diabetic Retinopathy - Segmentation and Grading" was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI - 2018). In this paper, we report the set-up and results of this challenge that is primarily based on Indian Diabetic Retinopathy Image Dataset (IDRiD). There were three principal sub-challenges: lesion segmentation, disease severity grading, and localization of retinal landmarks and segmentation. These multiple tasks in this challenge allow to test the generalizability of algorithms, and this is what makes it different from existing ones. It received a positive response from the scientific community with 148 submissions from 495 registrations effectively entered in this challenge. This paper outlines the challenge, its organization, the dataset used, evaluation methods and results of top-performing participating solutions. The top-performing approaches utilized a blend of clinical information, data augmentation, and an ensemble of models. These findings have the potential to enable new developments in retinal image analysis and image-based DR screening in particular.
  2. Pirkis J, Gunnell D, Shin S, Del Pozo-Banos M, Arya V, Aguilar PA, et al.
    EClinicalMedicine, 2022 Sep;51:101573.
    PMID: 35935344 DOI: 10.1016/j.eclinm.2022.101573
    BACKGROUND: Predicted increases in suicide were not generally observed in the early months of the COVID-19 pandemic. However, the picture may be changing and patterns might vary across demographic groups. We aimed to provide a timely, granular picture of the pandemic's impact on suicides globally.

    METHODS: We identified suicide data from official public-sector sources for countries/areas-within-countries, searching websites and academic literature and contacting data custodians and authors as necessary. We sent our first data request on 22nd June 2021 and stopped collecting data on 31st October 2021. We used interrupted time series (ITS) analyses to model the association between the pandemic's emergence and total suicides and suicides by sex-, age- and sex-by-age in each country/area-within-country. We compared the observed and expected numbers of suicides in the pandemic's first nine and first 10-15 months and used meta-regression to explore sources of variation.

    FINDINGS: We sourced data from 33 countries (24 high-income, six upper-middle-income, three lower-middle-income; 25 with whole-country data, 12 with data for area(s)-within-the-country, four with both). There was no evidence of greater-than-expected numbers of suicides in the majority of countries/areas-within-countries in any analysis; more commonly, there was evidence of lower-than-expected numbers. Certain sex, age and sex-by-age groups stood out as potentially concerning, but these were not consistent across countries/areas-within-countries. In the meta-regression, different patterns were not explained by countries' COVID-19 mortality rate, stringency of public health response, economic support level, or presence of a national suicide prevention strategy. Nor were they explained by countries' income level, although the meta-regression only included data from high-income and upper-middle-income countries, and there were suggestions from the ITS analyses that lower-middle-income countries fared less well.

    INTERPRETATION: Although there are some countries/areas-within-countries where overall suicide numbers and numbers for certain sex- and age-based groups are greater-than-expected, these countries/areas-within-countries are in the minority. Any upward movement in suicide numbers in any place or group is concerning, and we need to remain alert to and respond to changes as the pandemic and its mental health and economic consequences continue.

    FUNDING: None.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links