Displaying all 2 publications

Abstract:
Sort:
  1. Cheng V, Abdul-Aziz MH, Roberts JA, Shekar K
    Expert Opin Drug Metab Toxicol, 2019 Feb;15(2):103-112.
    PMID: 30582435 DOI: 10.1080/17425255.2019.1563596
    INTRODUCTION: One major challenge to achieving optimal patient outcome in extracorporeal membrane oxygenation (ECMO) is the development of effective dosing strategies in this critically ill patient population. Suboptimal drug dosing impacts on patient outcome as patients on ECMO often require reversal of the underlying pathology with effective pharmacotherapy in order to be liberated of the life-support device. Areas covered: This article provides a concise review of the effective use of antibiotics, analgesics, and sedative by characterizing the specific changes in PK secondary to the introduction of the ECMO support. We also discuss the barriers to achieving optimal pharmacotherapy in patients on ECMO and also the current and potential research that can be undertaken to address these clinical challenges. Expert opinion: Decreased bioavailability due to sequestration of drugs in the ECMO circuit and ECMO induced PK alterations are both significant barriers to optimal drug dosing. Evidence-based drug choices may minimize sequestration in the circuit and would enable safety and efficacy to be maintained. More work to characterize ECMO related pharmacodynamic alterations such as effects of ECMO on hepatic cytochrome system are still needed. Novel techniques to increase target site concentrations should also be explored.
  2. Cheng V, Abdul-Aziz MH, Roberts JA, Shekar K
    J Thorac Dis, 2018 Mar;10(Suppl 5):S629-S641.
    PMID: 29732181 DOI: 10.21037/jtd.2017.09.154
    Optimal pharmacological management during extracorporeal membrane oxygenation (ECMO) involves more than administering drugs to reverse underlying disease. ECMO is a complex therapy that should be administered in a goal-directed manner to achieve therapeutic endpoints that allow reversal of disease and ECMO wean, minimisation of complications (treatment of complications when they do occur), early interruption of sedation and rehabilitation, maximising patient comfort and minimising risks of delirium. ECMO can alter both the pharmacokinetics (PK) and pharmacodynamics (PD) of administered drugs and our understanding of these alterations is still evolving. Based on available data it appears that modern ECMO circuitry probably has a less significant impact on PK when compared with critical illness itself. However, these findings need further confirmation in clinical population PK studies and such studies are underway. The altered PD associated with ECMO is less understood and more research is indicated. Until robust dosing guidelines become available, clinicians will have to rely on the principles of drug dosing in critically ill and known PK alterations induced by ECMO itself. This article summarises the PK alterations and makes preliminary recommendations on possible dosing approaches.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links