This document is the first of a series of policy statements being issued by the Asia-Oceania Federation of Organizations for Medical Physics (AFOMP). The document was developed by the AFOMP Professional Development Committee (PDC) and was endorsed for official release by AFOMP Council in 2006. The main purpose of the document was to give guidance to AFOMP member organizations on the role and responsibilities of clinical medical physicists. A definition of clinical medical physicist has also been provided. This document discusses the following topics: professional aspects of education and training; responsibilities of the clinical medical physicist; status and organization of the clinical medical physics service and the need for clinical medical physics service.
It was the aim of this work to assess and track the workload, working conditions and professional recognition of radiation oncology medical physicists (ROMPs) in the Asia Pacific region over time. In this third survey since 2008, a structured questionnaire was mailed in 2014 to 22 senior medical physicists representing 23 countries. As in previous surveys the questionnaire covered seven themes: 1 education, training and professional certification, 2 staffing, 3 typical tasks, 4 professional organisations, 5 resources, 6 research and teaching, and 7 job satisfaction. The response rate of 100% is a result of performing a survey through a network, which allows easy follow-up. The replies cover 4841 ROMPs in 23 countries. Compared to 2008, the number of medical physicists in many countries has doubled. However, the number of experienced ROMPs compared to the overall workforce is still small, especially in low and middle income countries. The increase in staff is matched by a similar increase in the number of treatment units over the years. Furthermore, the number of countries using complex techniques (IMRT, IGRT) or installing high end equipment (tomotherapy, robotic linear accelerators) is increasing. Overall, ROMPs still feel generally overworked and the professional recognition, while varying widely, appears to be improving only slightly. Radiation oncology medical physics practice has not changed significantly over the last 6 years in the Asia Pacific Region even if the number of physicists and the number and complexity of treatment techniques and technologies have increased dramatically.
The history of medical physics in Asia-Oceania goes back to the late nineteenth century when X-ray imaging was introduced, although medical physicists were not appointed until much later. Medical physics developed very quickly in some countries, but in others the socio-economic situation as such prevented it being established for many years. In others, the political situation and war has impeded its development. In many countries their medical physics history has not been well recorded and there is a danger that it will be lost to future generations. In this paper, brief histories of the development of medical physics in most countries in Asia-Oceania are presented by a large number of authors to serve as a record. The histories are necessarily brief; otherwise the paper would quickly turn into a book of hundreds of pages. The emphasis in each history as recorded here varies as the focus and culture of the countries as well as the length of their histories varies considerably.