Displaying all 3 publications

Abstract:
Sort:
  1. Bester C, Collins A, Razmovski T, Weder S, Briggs RJ, Wei B, et al.
    Hear Res, 2022 Dec;426:108353.
    PMID: 34600798 DOI: 10.1016/j.heares.2021.108353
    BACKGROUND: Preservation of natural hearing during cochlear implantation is associated with improved speech outcomes, however more than half of implant recipients lose this hearing. Real-time electrophysiological monitoring of cochlear output during implantation, made possible by recording electrocochleography using the electrodes on the cochlear implant, has shown promise in predicting hearing preservation. Sudden drops in the amplitude of the cochlear microphonic (CM) have been shown to predict more severe hearing losses. Here, we report on a randomized clinical trial investigating whether immediate surgical intervention triggered by these drops can save residual hearing.

    METHODS: A single-blinded placebo-controlled trial of surgical intervention triggered when CM amplitude dropped by at least 30% of a prior maximum amplitude during cochlear implantation. Intraoperative electrocochleography was recorded in 60 adults implanted with Cochlear Ltd's Thin Straight Electrode, half randomly assigned to a control group and half to an interventional group. The surgical intervention was to withdraw the electrode in ½-mm steps to recover CM amplitude. The primary outcome was hearing preservation 3 months following implantation, with secondary outcomes of speech-in-noise reception thresholds by group or CM outcome, and depth of implantation.

    RESULTS: Sixty patients were recruited; neither pre-operative audiometry nor speech reception thresholds were significantly different between groups. Post-operatively, hearing preservation was significantly better in the interventional group. This was the case in absolute difference (median of 30 dB for control, 20 dB for interventional, χ² = 6.2, p = .013), as well as for relative difference (medians of 66% for the control, 31% for the interventional, χ² = 5.9, p = .015). Speech-in-noise reception thresholds were significantly better in patients with no CM drop at any point during insertion compared with patients with a CM drop; however, those with successfully recovered CMs after an initial drop were not significantly different (median gain required for speech reception score of 50% above noise of 6.9 dB for no drop, 8.6 for recovered CM, and 9.8 for CM drop, χ² = 6.8, p = .032). Angular insertion depth was not significantly different between control and interventional groups.

    CONCLUSIONS: This is the first demonstration that surgical intervention in response to intraoperative hearing monitoring can save residual hearing during cochlear implantation.

  2. Pecoits-Filho R, Okpechi IG, Donner JA, Harris DCH, Aljubori HM, Bello AK, et al.
    Kidney Int Suppl (2011), 2020 Mar;10(1):e3-e9.
    PMID: 32149004 DOI: 10.1016/j.kisu.2019.11.001
    A large gap between the number of people with end-stage kidney disease (ESKD) who received kidney replacement therapy (KRT) and those who needed it has been recently identified, and it is estimated that approximately one-half to three-quarters of all people with ESKD in the world may have died prematurely because they could not receive KRT. This estimate is aligned with a previous report that estimated that >3 million people in the world died each year because they could not access KRT. This review discusses the reasons for the differences in treated and untreated ESKD and KRT modalities and outcomes and presents strategies to close the global KRT gap by establishing robust health information systems to guide resource allocation to areas of need, inform KRT service planning, enable policy development, and monitor KRT health outcomes.
  3. Zak J, Vives V, Szumska D, Vernet A, Schneider JE, Miller P, et al.
    Cell Death Differ, 2016 Dec;23(12):1973-1984.
    PMID: 27447114 DOI: 10.1038/cdd.2016.76
    Chromosomal abnormalities are implicated in a substantial number of human developmental syndromes, but for many such disorders little is known about the causative genes. The recently described 1q41q42 microdeletion syndrome is characterized by characteristic dysmorphic features, intellectual disability and brain morphological abnormalities, but the precise genetic basis for these abnormalities remains unknown. Here, our detailed analysis of the genetic abnormalities of 1q41q42 microdeletion cases identified TP53BP2, which encodes apoptosis-stimulating protein of p53 2 (ASPP2), as a candidate gene for brain abnormalities. Consistent with this, Trp53bp2-deficient mice show dilation of lateral ventricles resembling the phenotype of 1q41q42 microdeletion patients. Trp53bp2 deficiency causes 100% neonatal lethality in the C57BL/6 background associated with a high incidence of neural tube defects and a range of developmental abnormalities such as congenital heart defects, coloboma, microphthalmia, urogenital and craniofacial abnormalities. Interestingly, abnormalities show a high degree of overlap with 1q41q42 microdeletion-associated abnormalities. These findings identify TP53BP2 as a strong candidate causative gene for central nervous system (CNS) defects in 1q41q42 microdeletion syndrome, and open new avenues for investigation of the mechanisms underlying CNS abnormalities.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links