Displaying all 4 publications

Abstract:
Sort:
  1. Md Noor J, Eddie EA
    Ultrasound J, 2019 Apr 25;11(1):7.
    PMID: 31359168 DOI: 10.1186/s13089-019-0123-x
    BACKGROUND: Traumatic pneumopericardium is rare and usually results from blunt injury. Diagnosis through clinical and chest X-ray is often difficult. Ultrasound findings of A-line artifacts in the cardiac window may suggest pneumopericardium.

    CASE PRESENTATION: A young man involved in a car accident and sustained blunt thoracic injuries, among others. As part of primary survey, FAST scan was performed. Subxiphoid view to look for evidence of pericardial effusion showed part of the cardiac image obscured by A-lines. Other cardiac windows showed only A-lines, as well. A suspicion of pneumopericardium was raised and CT scan confirmed the diagnosis.

    CONCLUSIONS: Although FAST scan was originally used to look for presence of free fluid, with the knowledge of lung ultrasound for pneumothorax, our findings suggest that FAST scan can also be used to detect pneumopericardium.

  2. Abd Wahab M, Eddie EA, Ibrahim Ahmad UQA, Shafie H, Shaikh Abd Karim SB, Abdull Wahab SF
    J Ultrasound, 2022 Jan 15.
    PMID: 35032294 DOI: 10.1007/s40477-021-00609-4
    PURPOSE: The portability of a hand-held ultrasound allows the health care worker to conduct lung ultrasound in out-of-hospital setting. It is used as a tool to conduct staging and triaging for COVID-19 patients. This study evaluated the utilization of lung ultrasound in an out-of-hospital setting versus chest x-rays in detecting and staging of COVID-19 patients with pneumonia.

    METHODS: The study was conducted among COVID-19 subjects at an out-of-hospital setting whereby lung ultrasound was done and subsequently chest x-rays were taken after being admitted to the health care facilities. Lung ultrasound findings were reviewed by emergency physicians, while the chest x-rays were reviewed by radiologists. Radiologists were blinded by the patients' lung ultrasound findings and clinical conditions. The analysis of the agreement between the lung ultrasound findings and chest x-rays was conducted.

    RESULTS: A total of 261 subjects were recruited. LUS detected pulmonary infiltrative changes in more stage 3 COVID-19 subjects in comparison to chest x-rays. Multiple B-lines were the predominant findings at the right lower anterior, posterior and lateral zones. Interstitial consolidations and ground glass opacities were the predominant descriptive findings in chest x-rays. However, there was no agreement between lung ultrasound and chest x-ray findings in detecting COVID-19 pneumonia as the Cohen's Kappa coefficient was 0.08 (95% CI 0.06-0.22, p = 0.16).

    CONCLUSION: The diagnostic imaging and staging of COVID-19 patients using lung ultrasound in out-of-hospital settings showed LUS detected lung pleural disease more often than CXR for stage 3 COVID-19 patients.

  3. Tripathi M, Singh BK, Liehn EA, Lim SY, Tikno K, Castano-Mayan D, et al.
    Autophagy, 2022 Sep;18(9):2150-2160.
    PMID: 35012409 DOI: 10.1080/15548627.2021.2021494
    Caffeine is among the most highly consumed substances worldwide, and it has been associated with decreased cardiovascular risk. Although caffeine has been shown to inhibit the proliferation of vascular smooth muscle cells (VSMCs), the mechanism underlying this effect is unknown. Here, we demonstrated that caffeine decreased VSMC proliferation and induced macroautophagy/autophagy in an in vivo vascular injury model of restenosis. Furthermore, we studied the effects of caffeine in primary human and mouse aortic VSMCs and immortalized mouse aortic VSMCs. Caffeine decreased cell proliferation, and induced autophagy flux via inhibition of MTOR signaling in these cells. Genetic deletion of the key autophagy gene Atg5, and the Sqstm1/p62 gene encoding a receptor protein, showed that the anti-proliferative effect by caffeine was dependent upon autophagy. Interestingly, caffeine also decreased WNT-signaling and the expression of two WNT target genes, Axin2 and Ccnd1 (cyclin D1). This effect was mediated by autophagic degradation of a key member of the WNT signaling cascade, DVL2, by caffeine to decrease WNT signaling and cell proliferation. SQSTM1/p62, MAP1LC3B-II and DVL2 were also shown to interact with each other, and the overexpression of DVL2 counteracted the inhibition of cell proliferation by caffeine. Taken together, our in vivo and in vitro findings demonstrated that caffeine reduced VSMC proliferation by inhibiting WNT signaling via stimulation of autophagy, thus reducing the vascular restenosis. Our findings suggest that caffeine and other autophagy-inducing drugs may represent novel cardiovascular therapeutic tools to protect against restenosis after angioplasty and/or stent placement.
  4. Cabrera-Fuentes HA, Aragones J, Bernhagen J, Boening A, Boisvert WA, Bøtker HE, et al.
    Basic Res Cardiol, 2016 11;111(6):69.
    PMID: 27743118
    In this meeting report, particularly addressing the topic of protection of the cardiovascular system from ischemia/reperfusion injury, highlights are presented that relate to conditioning strategies of the heart with respect to molecular mechanisms and outcome in patients' cohorts, the influence of co-morbidities and medications, as well as the contribution of innate immune reactions in cardioprotection. Moreover, developmental or systems biology approaches bear great potential in systematically uncovering unexpected components involved in ischemia-reperfusion injury or heart regeneration. Based on the characterization of particular platelet integrins, mitochondrial redox-linked proteins, or lipid-diol compounds in cardiovascular diseases, their targeting by newly developed theranostics and technologies opens new avenues for diagnosis and therapy of myocardial infarction to improve the patients' outcome.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links