Displaying all 2 publications

Abstract:
Sort:
  1. Campos BG, Moreira LB, G F E P, Cruz ACF, Perina FC, Abreu F, et al.
    Environ Pollut, 2023 Aug 01;330:121797.
    PMID: 37169238 DOI: 10.1016/j.envpol.2023.121797
    DCOIT is an effective antifouling biocide, which presence in the environment and toxicity towards non-target species has been generating great concern. This study evaluated the waterborne toxicity of DCOIT on marine invertebrates (i.e., survival of brine shrimp Artemia sp., larval development of the sea urchin Echinometra lucunter and the mussel Perna perna), as well as DCOIT-spiked-sediment toxicity on the fecundity rate of the copepod Nitrocra sp. And the mortality of the amphipod Tiburonella viscana. The data outcomes were used to calculate environmental hazards and risks, which were compared to their corresponding values obtained from temperate regions. Waterborne toxicity can be summarized as follows: Artemia sp. (LC50-48h = 163 (135-169) μg/L), E. lucunter (EC50-36h = 33.9 (17-65) μg/L), and P. perna (EC50-48h = 8.3 (7-9) μg/L). For whole-sediment toxicity, metrics were calculated for T. viscana (LC50-10d = 0.5 (0.1-2.6) μg/g) and Nitrocra sp, (EC50-10d = 200 (10-480) μg/kg). The DCOIT hazard was assessed for both tropical and non-tropical pelagic organisms. The predicted no-effect concentration (PNEC) for tropical species (0.19 μg/L) was 1.7-fold lower than that for non-tropical organisms (0.34 μg/L). In whole-sediment exposures, DCOIT presented a PNEC of 0.97 μg/kg, and the risk quotients (RQs) were >1 for areas with constant input of DCOIT such as ports ship/boatyards, marinas, and maritime traffic zones of Korea, Japan, Spain, Malaysia, Indonesia, Vietnam, and Brazil. The presented data are important for supporting the establishment of policies and regulations for booster biocides worldwide.
  2. Kannan K, Corsolini S, Falandysz J, Fillmann G, Kumar KS, Loganathan BG, et al.
    Environ Sci Technol, 2004 Sep 1;38(17):4489-95.
    PMID: 15461154
    Perfluorooctanesulfonyl fluoride based compounds have been used in a wide variety of consumer products, such as carpets, upholstery, and textiles. These compounds degrade to perfluorooctanesulfonate (PFOS), a persistent metabolite that accumulates in tissues of humans and wildlife. Previous studies have reported the occurrence of PFOS, perfluorohexanesulfonate (PFHxS), perfluorooctanoate (PFOA), and perfluorooctanesulfonamide (PFOSA) in human sera collected from the United States. In this study, concentrations of PFOS, PFHxS, PFOA, and PFOSA were measured in 473 human blood/serum/plasma samples collected from the United States, Colombia, Brazil, Belgium, Italy, Poland, India, Malaysia, and Korea. Among the four perfluorochemicals measured, PFOS was the predominant compound found in blood. Concentrations of PFOS were the highest in the samples collected from the United States and Poland (>30 ng/mL); moderate in Korea, Belgium, Malaysia, Brazil, Italy, and Colombia (3 to 29 ng/mL); and lowest in India (<3 ng/mL). PFOA was the next most abundant perfluorochemical in blood samples, although the frequency of occurrence of this compound was relatively low. No age- or gender-related differences in the concentrations of PFOS and PFOA were found in serum samples. The degree of association between the concentrations of four perfluorochemicals varied, depending on the origin of the samples. These results suggested the existence of sources with varying levels and compositions of perfluorochemicals, and differences in exposure patterns to these chemicals, in various countries. In addition to the four target fluorochemicals measured, qualitative analysis of selected blood samples showed the presence of other perfluorochemicals such as perfluorodecanesulfonate (PFDS), perfluoroheptanoic acid (PFHpA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorododecanoic acid (PFDoA), and perfluoroundecanoic acid (PFUnDA) in serum samples, at concentrations approximately 5- to 10-fold lower than the concentration of PFOS. Further studies should focus on identifying sources and pathways of human exposure to perfluorochemicals.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links