METHODS AND RESULTS: Sixty-two individuals (24 SARC+LVH-, 24 HCM, and 14 matched controls) were evaluated with multi-parametric CMR including stimulated echo acquisition mode DT-CMR, and blinded quantitative 12-lead ECG analysis. Mean diastolic fractional anisotropy (FA) was reduced in HCM compared with SARC+LVH- and controls (0.49 ± 0.05 vs. 0.52 ± 0.04 vs. 0.53 ± 0.04, P = 0.009), even after adjustment for differences in extracellular volume (ECV) (P = 0.038). Both HCM and SARC+LVH- had segments with significantly reduced diastolic FA relative to controls (54 vs. 25 vs. 0%, P = 0.002). Multiple repolarization parameters were prolonged in HCM and SARC+LVH-, with corrected JT interval (JTc) being most significant (354 ± 42 vs. 356 ± 26 vs. 314 ± 26 ms, P = 0.002). Among SARC+LVH-, JTc duration correlated negatively with mean diastolic FA (r = -0.6, P = 0.002). In HCM, the JTc interval showed a stronger association with ECV (r = 0.6 P = 0.019) than with mean diastolic FA (r = -0.1 P = 0.72). JTc discriminated SARC+LVH- from controls [area under the receiver operator curve 0.88, confidence interval 0.76-1.00, P < 0.001], and in HCM correlated with the European Society of Cardiology HCM sudden cardiac death risk score (r = 0.5, P = 0.014).
CONCLUSION: Low diastolic FA, suggestive of myocardial disarray, is present in both SARC+LVH- and HCM. Low FA and raised ECV were associated with repolarization prolongation. Myocardial disarray assessment using DT-CMR and repolarization parameters such as the JTc interval demonstrate significant potential as markers of disease activity in HCM.
METHODS: Post-hospitalised patients (n = 212) and age, sex and comorbidity-matched controls (n = 38) underwent CMR and 12‑lead ECG in a prospective multicenter follow-up study. Participants were screened for routinely reported ECG abnormalities, including arrhythmia, conduction and R wave abnormalities and ST-T changes (excluding repolarisation intervals). Quantitative repolarisation analyses included corrected QT (QTc), corrected QT dispersion (QTc disp), corrected JT (JTc) and corrected T peak-end (cTPe) intervals.
RESULTS: At a median of 5.6 months, patients had a higher burden of ECG abnormalities (72.2% vs controls 42.1%, p = 0.001) and lower LVEF but a comparable cumulative burden of CMR abnormalities than controls. Patients with CMR abnormalities had more ECG abnormalities and longer repolarisation intervals than those with normal CMR and controls (82% vs 69% vs 42%, p