Displaying all 2 publications

Abstract:
Sort:
  1. Wu LE, Meoli CC, Mangiafico SP, Fazakerley DJ, Cogger VC, Mohamad M, et al.
    Diabetes, 2014 Aug;63(8):2656-67.
    PMID: 24696450 DOI: 10.2337/db13-1665
    The vascular endothelial growth factor (VEGF) family of cytokines are important regulators of angiogenesis that have emerged as important targets for the treatment of obesity. While serum VEGF levels rise during obesity, recent studies using genetic models provide conflicting evidence as to whether VEGF prevents or accelerates metabolic dysfunction during obesity. In the current study, we sought to identify the effects of VEGF-A neutralization on parameters of glucose metabolism and insulin action in a dietary mouse model of obesity. Within only 72 h of administration of the VEGF-A-neutralizing monoclonal antibody B.20-4.1, we observed almost complete reversal of high-fat diet-induced insulin resistance principally due to improved insulin sensitivity in the liver and in adipose tissue. These effects were independent of changes in whole-body adiposity or insulin signaling. These findings show an important and unexpected role for VEGF in liver insulin resistance, opening up a potentially novel therapeutic avenue for obesity-related metabolic disease.
  2. Aji G, Huang Y, Ng ML, Wang W, Lan T, Li M, et al.
    Proc Natl Acad Sci U S A, 2020 09 29;117(39):24434-24442.
    PMID: 32917816 DOI: 10.1073/pnas.2007856117
    Sphingolipid dysregulation is often associated with insulin resistance, while the enzymes controlling sphingolipid metabolism are emerging as therapeutic targets for improving insulin sensitivity. We report herein that sphingosine kinase 2 (SphK2), a key enzyme in sphingolipid catabolism, plays a critical role in the regulation of hepatic insulin signaling and glucose homeostasis both in vitro and in vivo. Hepatocyte-specific Sphk2 knockout mice exhibit pronounced insulin resistance and glucose intolerance. Likewise, SphK2-deficient hepatocytes are resistant to insulin-induced activation of the phosphoinositide 3-kinase (PI3K)-Akt-FoxO1 pathway and elevated hepatic glucose production. Mechanistically, SphK2 deficiency leads to the accumulation of sphingosine that, in turn, suppresses hepatic insulin signaling by inhibiting PI3K activation in hepatocytes. Either reexpressing functional SphK2 or pharmacologically inhibiting sphingosine production restores insulin sensitivity in SphK2-deficient hepatocytes. In conclusion, the current study provides both experimental findings and mechanistic data showing that SphK2 and sphingosine in the liver are critical regulators of insulin sensitivity and glucose homeostasis.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links