Displaying all 2 publications

Abstract:
Sort:
  1. Kaiyrzhanov R, Thompson K, Efthymiou S, Mukushev A, Zharylkassyn A, Prasad C, et al.
    Brain Commun, 2025;7(1):fcae453.
    PMID: 39963288 DOI: 10.1093/braincomms/fcae453
    Biallelic variants in NADH (nicotinamide adenine dinucleotide (NAD) + hydrogen (H))-ubiquinone oxidoreductase 1 alpha subcomplex 13 have been linked to mitochondrial complex I deficiency, nuclear type 28, based on three affected individuals from two families. With only two families reported, the clinical and molecular spectrum of NADH-ubiquinone oxidoreductase 1 alpha subcomplex 13-related diseases remains unclear. We report 10 additional affected individuals from nine independent families, identifying four missense variants (including recurrent c.170G > A) and three ultra-rare or novel predicted loss-of-function biallelic variants. Updated clinical-radiological data from previously reported families and a literature review compiling clinical features of all reported patients with isolated complex I deficiency caused by 43 genes encoding complex I subunits and assembly factors are also provided. Our cohort (mean age 7.8 ± 5.4 years; range 2.5-18) predominantly presented a moderate-to-severe neurodevelopmental syndrome with oculomotor abnormalities (84%), spasticity/hypertonia (83%), hypotonia (69%), cerebellar ataxia (66%), movement disorders (58%) and epilepsy (46%). Neuroimaging revealed bilateral symmetric T2 hyperintense substantia nigra lesions (91.6%) and optic nerve atrophy (66.6%). Protein modeling suggests missense variants destabilize a critical junction between the hydrophilic and membrane arms of complex I. Fibroblasts from two patients showed reduced complex I activity and compensatory complex IV activity increase. This study characterizes NADH-ubiquinone oxidoreductase 1 alpha subcomplex 13-related disease in 13 individuals, highlighting genotype-phenotype correlations.
  2. Cali E, Quirin T, Rocca C, Efthymiou S, Riva A, Marafi D, et al.
    Genet Med, 2024 Sep 17.
    PMID: 39275948 DOI: 10.1016/j.gim.2024.101251
    PURPOSE: This study aims to comprehensively delineate the phenotypic spectrum of ACTL6B-related disorders, previously associated with both autosomal recessive and autosomal dominant neurodevelopmental disorders. Molecularly, the role of the nucleolar protein ACTL6B in contributing to the disease has remained unclear.

    METHODS: We identified 105 affected individuals, including 39 previously reported cases, and systematically analyzed detailed clinical and genetic data for all individuals. Additionally, we conducted knockdown experiments in neuronal cells to investigate the role of ACTL6B in ribosome biogenesis.

    RESULTS: Biallelic variants in ACTL6B are associated with severe-to-profound global developmental delay/intellectual disability, infantile intractable seizures, absent speech, autistic features, dystonia, and increased lethality. De novo monoallelic variants result in moderate-to-severe global developmental delay/intellectual disability, absent speech, and autistic features, whereas seizures and dystonia were less frequently observed. Dysmorphic facial features and brain abnormalities, including hypoplastic corpus callosum, and parenchymal volume loss/atrophy, are common findings in both groups. We reveal that in the nucleolus, ACTL6B plays a crucial role in ribosome biogenesis, particularly in pre-rRNA processing.

    CONCLUSION: This study provides a comprehensive characterization of the clinical spectrum of both autosomal recessive and dominant forms of ACTL6B-associated disorders. It offers a comparative analysis of their respective phenotypes provides a plausible molecular explanation and suggests their inclusion within the expanding category of "ribosomopathies."

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links