Displaying all 2 publications

Abstract:
Sort:
  1. Daum LT, Canas LC, Klimov AI, Shaw MW, Gibbons RV, Shrestha SK, et al.
    Arch Virol, 2006 Sep;151(9):1863-74.
    PMID: 16736092
    Currently circulating influenza B viruses can be divided into two antigenically and genetically distinct lineages referred to by their respective prototype strains, B/Yamagata/16/88 and B/Victoria/2/87, based on amino acid differences in the hemagglutinin surface glycoprotein. During May and July 2005, clinical specimens from two early season influenza B outbreaks in Arizona and southeastern Nepal were subjected to antigenic (hemagglutinin inhibition) and nucleotide sequence analysis of hemagglutinin (HA1), neuraminidase (NA), and NB genes. All isolates exhibited little reactivity with the B/Shanghai/361/2002 (B/Yamagata-like) vaccine strain and significantly reduced reactivity with the previous 2003/04 B/Hong Kong/330/2001 (B/Victoria-like) vaccine strain. The majority of isolates were antigenically similar to B/Hawaii/33/2004, a B/Victoria-like reference strain. Sequence analysis indicated that 33 of 34 isolates contained B/Victoria-like HA and B/Yamagata-like NA and NB proteins. Thus, these outbreak isolates are both antigenically and genetically distinct from the current Northern Hemisphere vaccine virus strain as well as the previous 2003-04 B/Hong Kong/330/2001 (B/Victoria lineage) vaccine virus strain but are genetically similar to B/Malaysia/2506/2004, the vaccine strain proposed for the coming seasons in the Northern and Southern Hemispheres. Since these influenza B outbreaks occurred in two very distant geographical locations, these viruses may continue to circulate during the 2006 season, underscoring the importance of rapid molecular monitoring of HA, NA and NB for drift and reassortment.
  2. van Panhuis WG, Choisy M, Xiong X, Chok NS, Akarasewi P, Iamsirithaworn S, et al.
    Proc Natl Acad Sci U S A, 2015 Oct 20;112(42):13069-74.
    PMID: 26438851 DOI: 10.1073/pnas.1501375112
    Dengue is a mosquito-transmitted virus infection that causes epidemics of febrile illness and hemorrhagic fever across the tropics and subtropics worldwide. Annual epidemics are commonly observed, but there is substantial spatiotemporal heterogeneity in intensity. A better understanding of this heterogeneity in dengue transmission could lead to improved epidemic prediction and disease control. Time series decomposition methods enable the isolation and study of temporal epidemic dynamics with a specific periodicity (e.g., annual cycles related to climatic drivers and multiannual cycles caused by dynamics in population immunity). We collected and analyzed up to 18 y of monthly dengue surveillance reports on a total of 3.5 million reported dengue cases from 273 provinces in eight countries in Southeast Asia, covering ∼ 10(7) km(2). We detected strong patterns of synchronous dengue transmission across the entire region, most markedly during a period of high incidence in 1997-1998, which was followed by a period of extremely low incidence in 2001-2002. This synchrony in dengue incidence coincided with elevated temperatures throughout the region in 1997-1998 and the strongest El Niño episode of the century. Multiannual dengue cycles (2-5 y) were highly coherent with the Oceanic Niño Index, and synchrony of these cycles increased with temperature. We also detected localized traveling waves of multiannual dengue epidemic cycles in Thailand, Laos, and the Philippines that were dependent on temperature. This study reveals forcing mechanisms that drive synchronization of dengue epidemics on a continental scale across Southeast Asia.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links