Displaying all 2 publications

Abstract:
Sort:
  1. Ying CK, Bolst D, Rosenfeld A, Guatelli S
    J Med Phys, 2019 12 11;44(4):263-269.
    PMID: 31908385 DOI: 10.4103/jmp.JMP_40_19
    Purpose: The main advantages of charged particle radiotherapy compared to conventional X-ray external beam radiotherapy are a better tumor conformality coupled with the capability of treating deep-seated radio-resistant tumors. This work investigates the possibility to use oxygen beams for hadron therapy, as an alternative to carbon ions.

    Materials and Methods: Oxygen ions have the advantage of a higher relative biological effectiveness (RBE) and better conformality to the tumor target. This work describes the mixed radiation field produced by an oxygen beam in water and compares it to the one produced by a therapeutic carbon ion beam. The study has been performed using Geant4 simulations. The dose is calculated for incident carbon ions with energies of 162 MeV/u and 290 MeV/u, and oxygen ions with energies of 192 MeV/u and 245 MeV/u, and hence that the range of the primary oxygen ions projectiles in water was located at the same depth as the carbon ions.

    Results: The results show that the benefits of oxygen ions are more pronounced when using lower energies because of a slightly higher peak-to-entrance ratio, which allows either providing higher dose in tumor target or reducing it in the surrounding healthy tissues. It is observed that, per incident particle, oxygen ions deliver higher doses than carbon ions.

    Conclusions: This result coupled with the higher RBE shows that it may be possible to use a lower fluence of oxygen ions to achieve the same therapeutic dose in the patient as that obtained with carbon ion therapy.

  2. Hashikin NAA, Yeong CH, Guatelli S, Abdullah BJJ, Ng KH, Malaroda A, et al.
    Phys Med Biol, 2017 Aug 22;62(18):7342-7356.
    PMID: 28686171 DOI: 10.1088/1361-6560/aa7e5b
    We aimed to investigate the validity of the partition model (PM) in estimating the absorbed doses to liver tumour ([Formula: see text]), normal liver tissue ([Formula: see text]) and lungs ([Formula: see text]), when cross-fire irradiations between these compartments are being considered. MIRD-5 phantom incorporated with various treatment parameters, i.e. tumour involvement (TI), tumour-to-normal liver uptake ratio (T/N) and lung shunting (LS), were simulated using the Geant4 Monte Carlo (MC) toolkit. 108track histories were generated for each combination of the three parameters to obtain the absorbed dose per activity uptake in each compartment ([Formula: see text], [Formula: see text], and [Formula: see text]). The administered activities, A were estimated using PM, so as to achieve either limiting doses to normal liver, [Formula: see text] or lungs, [Formula: see text] (70 or 30 Gy, respectively). Using these administered activities, the activity uptake in each compartment ([Formula: see text], [Formula: see text], and [Formula: see text]) was estimated and multiplied with the absorbed dose per activity uptake attained using the MC simulations, to obtain the actual dose received by each compartment. PM overestimated [Formula: see text] by 11.7% in all cases, due to the escaped particles from the lungs. [Formula: see text] and [Formula: see text] by MC were largely affected by T/N, which were not considered by PM due to cross-fire exclusion at the tumour-normal liver boundary. These have resulted in the overestimation of [Formula: see text] by up to 8% and underestimation of [Formula: see text] by as high as  -78%, by PM. When [Formula: see text] was estimated via PM, the MC simulations showed significantly higher [Formula: see text] for cases with higher T/N, and LS  ⩽  10%. All [Formula: see text] and [Formula: see text] by MC were overestimated by PM, thus [Formula: see text] were never exceeded. PM leads to inaccurate dose estimations due to the exclusion of cross-fire irradiation, i.e. between the tumour and normal liver tissue. Caution should be taken for cases with higher TI and T/N, and lower LS, as they contribute to major underestimation of [Formula: see text]. For [Formula: see text], a different correction factor for dose calculation may be used for improved accuracy.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links