Antibiotics are the pillar of surgery from prophylaxis to treatment; any failure is potentially a leading cause for increased morbidity and mortality. Robust data on the burden of SSI especially those due to antimicrobial resistance (AMR) show variable rates between countries and geographical regions but accurate estimates of the incidence of surgical site infections (SSI) due to AMR and its related global economic impact are yet to be determined. Quantifying the burden of SSI treatment is an incentive to sensitize governments, healthcare systems, and the society to invest in quality improvement and sustainable development. However in the absence of a unified epidemiologically sound infection definition of SSI and a well-designed global surveillance system, the end result is a lack of accurate and reliable data that limits the comparability of estimates between countries and the possibility of tracking changes to inform healthcare professionals about the appropriateness of implemented infection prevention and control strategies. This review aims to highlight the reported gaps in surveillance methods, epidemiologic data, and evidence-based SSI prevention practices and in the methodologies undertaken for the evaluation of the economic burden of SSI associated with AMR bacteria. If efforts to tackle this problem are taken in isolation without a global alliance and data is still lacking generalizability and comparability, we may see the future as a race between the global research efforts for the advancement in surgery and the global alarming reports of the increased incidence of antimicrobial-resistant pathogens threatening to undermine any achievement.
Data on comprehensive population-based surveillance of antimicrobial resistance is lacking. In low- and middle-income countries, the challenges are high due to weak laboratory capacity, poor health systems governance, lack of health information systems, and limited resources. Developing countries struggle with political and social dilemma, and bear a high health and economic burden of communicable diseases. Available data are fragmented and lack representativeness which limits their use to advice health policy makers and orientate the efficient allocation of funding and financial resources on programs to mitigate resistance. Low-quality data means soaring rates of antimicrobial resistance and the inability to track and map the spread of resistance, detect early outbreaks, and set national health policy to tackle resistance. Here, we review the barriers and limitations of conducting effective antimicrobial resistance surveillance, and we highlight multiple incremental approaches that may offer opportunities to strengthen population-based surveillance if tailored to the context of each country.