A mathematical model is considered to determine the effectiveness of disin-
fectant solution for surface decontamination. The decontamination process involved the
diffusion of bacteria into disinfectant solution and the reaction of the disinfectant killing
effect. The mathematical model is a reaction-diffusion type. Finite difference method and
method of lines with fourth-order Runge-Kutta method are utilized to solve the model
numerically. To obtain stable solutions, von Neumann stability analysis is employed to
evaluate the stability of finite difference method. For stiff problem, Dormand-Prince
method is applied as the estimated error of fourth-order Runge-Kutta method. MATLAB
programming is selected for the computation of numerical solutions. From the results
obtained, fourth-order Runge-Kutta method has a larger stability region and better ac-
curacy of solutions compared to finite difference method when solving the disinfectant
solution model. Moreover, a numerical simulation is carried out to investigate the effect
of different thickness of disinfectant solution on bacteria reduction. Results show that
thick disinfectant solution is able to reduce the dimensionless bacteria concentration more
effectively.
This paper revisits the comrade matrix approach in finding the greatest com-
mon divisor (GCD) of two orthogonal polynomials. The present work investigates on the
applications of the QR decomposition with iterative refinement (QRIR) to solve certain
systems of linear equations which is generated from the comrade matrix. Besides iterative
refinement, an alternative approach of improving the conditioning behavior of the coeffi-
cient matrix by normalizing its columns is also considered. As expected the results reveal
that QRIR is able to improve the solutions given by QR decomposition while the nor-
malization of the matrix entries do improves the conditioning behavior of the coefficient
matrix leading to a good approximate solutions of the GCD.