Displaying all 2 publications

Abstract:
Sort:
  1. Chai, Jin Sian, Hoe, Yeak Su, Ali H. M. Murid
    MATEMATIKA, 2018;34(2):0-0.
    MyJurnal
    A mathematical model is considered to determine the effectiveness of disin-
    fectant solution for surface decontamination. The decontamination process involved the
    diffusion of bacteria into disinfectant solution and the reaction of the disinfectant killing
    effect. The mathematical model is a reaction-diffusion type. Finite difference method and
    method of lines with fourth-order Runge-Kutta method are utilized to solve the model
    numerically. To obtain stable solutions, von Neumann stability analysis is employed to
    evaluate the stability of finite difference method. For stiff problem, Dormand-Prince
    method is applied as the estimated error of fourth-order Runge-Kutta method. MATLAB
    programming is selected for the computation of numerical solutions. From the results
    obtained, fourth-order Runge-Kutta method has a larger stability region and better ac-
    curacy of solutions compared to finite difference method when solving the disinfectant
    solution model. Moreover, a numerical simulation is carried out to investigate the effect
    of different thickness of disinfectant solution on bacteria reduction. Results show that
    thick disinfectant solution is able to reduce the dimensionless bacteria concentration more
    effectively.
  2. Siti Nor Asiah binti Isa, Nor’aini Aris, Shazirawati Mohd Puzi, Hoe,Yeak Su
    MATEMATIKA, 2018;34(101):25-32.
    MyJurnal
    This paper revisits the comrade matrix approach in finding the greatest com-
    mon divisor (GCD) of two orthogonal polynomials. The present work investigates on the
    applications of the QR decomposition with iterative refinement (QRIR) to solve certain
    systems of linear equations which is generated from the comrade matrix. Besides iterative
    refinement, an alternative approach of improving the conditioning behavior of the coeffi-
    cient matrix by normalizing its columns is also considered. As expected the results reveal
    that QRIR is able to improve the solutions given by QR decomposition while the nor-
    malization of the matrix entries do improves the conditioning behavior of the coefficient
    matrix leading to a good approximate solutions of the GCD.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links