Displaying all 2 publications

Abstract:
Sort:
  1. Aizat WM, Jamil IN, Ahmad-Hashim FH, Noor NM
    PeerJ, 2019;7:e6324.
    PMID: 30755827 DOI: 10.7717/peerj.6324
    BACKGROUND: Mangosteen (Garcinia mangostana L.) fruit has a unique sweet-sour taste and is rich in beneficial compounds such as xanthones. Mangosteen originally been used in various folk medicines to treat diarrhea, wounds, and fever. More recently, it had been used as a major component in health supplement products for weight loss and for promoting general health. This is perhaps due to its known medicinal benefits, including as anti-oxidant and anti-inflammation. Interestingly, publications related to mangosteen have surged in recent years, suggesting its popularity and usefulness in research laboratories. However, there are still no updated reviews (up to 2018) in this booming research area, particularly on its metabolite composition and medicinal benefits.

    METHOD: In this review, we have covered recent articles within the years of 2016 to 2018 which focus on several aspects including the latest findings on the compound composition of mangosteen fruit as well as its medicinal usages.

    RESULT: Mangosteen has been vastly used in medicinal areas including in anti-cancer, anti-microbial, and anti-diabetes treatments. Furthermore, we have also described the benefits of mangosteen extract in protecting various human organs such as liver, skin, joint, eye, neuron, bowel, and cardiovascular tissues against disorders and diseases.

    CONCLUSION: All in all, this review describes the numerous manipulations of mangosteen extracted compounds in medicinal areas and highlights the current trend of its research. This will be important for future directed research and may allow researchers to tackle the next big challenge in mangosteen study: drug development and human applications.

  2. Jamil IN, Remali J, Azizan KA, Nor Muhammad NA, Arita M, Goh HH, et al.
    Front Plant Sci, 2020;11:944.
    PMID: 32754171 DOI: 10.3389/fpls.2020.00944
    Across all facets of biology, the rapid progress in high-throughput data generation has enabled us to perform multi-omics systems biology research. Transcriptomics, proteomics, and metabolomics data can answer targeted biological questions regarding the expression of transcripts, proteins, and metabolites, independently, but a systematic multi-omics integration (MOI) can comprehensively assimilate, annotate, and model these large data sets. Previous MOI studies and reviews have detailed its usage and practicality on various organisms including human, animals, microbes, and plants. Plants are especially challenging due to large poorly annotated genomes, multi-organelles, and diverse secondary metabolites. Hence, constructive and methodological guidelines on how to perform MOI for plants are needed, particularly for researchers newly embarking on this topic. In this review, we thoroughly classify multi-omics studies on plants and verify workflows to ensure successful omics integration with accurate data representation. We also propose three levels of MOI, namely element-based (level 1), pathway-based (level 2), and mathematical-based integration (level 3). These MOI levels are described in relation to recent publications and tools, to highlight their practicality and function. The drawbacks and limitations of these MOI are also discussed for future improvement toward more amenable strategies in plant systems biology.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links