MATERIALS AND METHODS: Literature search was performed using Scopus, PubMed, Ovid, Embase, and Cochrane databases. Only randomized controlled trials (RCTs) were included and the meta-analysis was conducted according to PRISMA guidelines.
RESULTS: We assessed for eligibility 1,307 abstracts, and 45 RCTs were finally included, for a total of 4,332 infertile patients. We found a significantly higher pregnancy rate in patients treated with AOX compared to placebo-treated or untreated controls, without significant inter-study heterogeneity. No effects on live-birth or miscarriage rates were observed in four studies. A significantly higher sperm concentration, sperm progressive motility, sperm total motility, and normal sperm morphology was found in patients compared to controls. We found no effect on SDF in analysis of three eligible studies. Seminal levels of total antioxidant capacity were significantly higher, while seminal malondialdehyde acid was significantly lower in patients than controls. These results did not change after exclusion of studies performed following varicocele repair.
CONCLUSIONS: The present analysis upgrades the level of evidence favoring a recommendation for using AOX in male infertility to improve the spontaneous pregnancy rate and the conventional sperm parameters. The failure to demonstrate an increase in live-birth rate, despite an increase in pregnancy rates, is due to the very few RCTs specifically assessing the impact of AOX on live-birth rate. Therefore, further RCTs assessing the impact of AOX on live-birth rate and miscarriage rate, and SDF will be helpful.
METHODS: We did a systematic review and meta-analysis of randomised controlled trials including IPD. We searched MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations, MEDLINE Epub Ahead of Print, Embase, Science Citation Index, the Cochrane Controlled Trials Register, Cochrane Database of Systematic Reviews, and Database of Abstracts of Review of Effects for literature from 1992 onwards (date of search, Aug 27, 2018). The following inclusion criteria were applied: (1) men aged 18 years and older with a screening testosterone concentration of 12 nmol/L (350 ng/dL) or less; (2) the intervention of interest was treatment with any testosterone formulation, dose frequency, and route of administration, for a minimum duration of 3 months; (3) a comparator of placebo treatment; and (4) studies assessing the pre-specified primary or secondary outcomes of interest. Details of study design, interventions, participants, and outcome measures were extracted from published articles and anonymised IPD was requested from investigators of all identified trials. Primary outcomes were mortality, cardiovascular, and cerebrovascular events at any time during follow-up. The risk of bias was assessed using the Cochrane Risk of Bias tool. We did a one-stage meta-analysis using IPD, and a two-stage meta-analysis integrating IPD with data from studies not providing IPD. The study is registered with PROSPERO, CRD42018111005.
FINDINGS: 9871 citations were identified through database searches and after exclusion of duplicates and of irrelevant citations, 225 study reports were retrieved for full-text screening. 116 studies were subsequently excluded for not meeting the inclusion criteria in terms of study design and characteristics of intervention, and 35 primary studies (5601 participants, mean age 65 years, [SD 11]) reported in 109 peer-reviewed publications were deemed suitable for inclusion. Of these, 17 studies (49%) provided IPD (3431 participants, mean duration 9·5 months) from nine different countries while 18 did not provide IPD data. Risk of bias was judged to be low in most IPD studies (71%). Fewer deaths occurred with testosterone treatment (six [0·4%] of 1621) than placebo (12 [0·8%] of 1537) without significant differences between groups (odds ratio [OR] 0·46 [95% CI 0·17-1·24]; p=0·13). Cardiovascular risk was similar during testosterone treatment (120 [7·5%] of 1601 events) and placebo treatment (110 [7·2%] of 1519 events; OR 1·07 [95% CI 0·81-1·42]; p=0·62). Frequently occurring cardiovascular events included arrhythmia (52 of 166 vs 47 of 176), coronary heart disease (33 of 166 vs 33 of 176), heart failure (22 of 166 vs 28 of 176), and myocardial infarction (10 of 166 vs 16 of 176). Overall, patient age (interaction 0·97 [99% CI 0·92-1·03]; p=0·17), baseline testosterone (interaction 0·97 [0·82-1·15]; p=0·69), smoking status (interaction 1·68 [0·41-6·88]; p=0.35), or diabetes status (interaction 2·08 [0·89-4·82; p=0·025) were not associated with cardiovascular risk.
INTERPRETATION: We found no evidence that testosterone increased short-term to medium-term cardiovascular risks in men with hypogonadism, but there is a paucity of data evaluating its long-term safety. Long-term data are needed to fully evaluate the safety of testosterone.
FUNDING: National Institute for Health Research Health Technology Assessment Programme.
METHODS: We did a systematic review and meta-analysis to evaluate characteristics associated with symptomatic benefit of testosterone treatment versus placebo in men aged 18 years and older with a baseline serum total testosterone concentration of less than 12 nmol/L. We searched major electronic databases (MEDLINE, Embase, Science Citation Index, and the Cochrane Central Register of Controlled Trials) and clinical trial registries for reports published in English between Jan 1, 1992, and Aug 27, 2018. Anonymised individual participant data were requested from the investigators of all identified trials. Primary (cardiovascular) outcomes from this analysis have been published previously. In this report, we present the secondary outcomes of sexual function, quality of life, and psychological outcomes at 12 months. We did a one-stage individual participant data meta-analysis with a random-effects linear regression model, and a two-stage meta-analysis integrating individual participant data with aggregated data from studies that did not provide individual participant data. This study is registered with PROSPERO, CRD42018111005.
FINDINGS: 9871 citations were identified through database searches. After exclusion of duplicates and publications not meeting inclusion criteria, 225 full texts were assessed for inclusion, of which 109 publications reporting 35 primary studies (with a total 5601 participants) were included. Of these, 17 trials provided individual participant data (3431 participants; median age 67 years [IQR 60-72]; 3281 [97%] of 3380 aged ≥40 years) Compared with placebo, testosterone treatment increased 15-item International Index of Erectile Function (IIEF-15) total score (mean difference 5·52 [95% CI 3·95-7·10]; τ2=1·17; n=1412) and IIEF-15 erectile function subscore (2·14 [1·40-2·89]; τ2=0·64; n=1436), reaching the minimal clinically important difference for mild erectile dysfunction. These effects were not found to be dependent on participant age, obesity, presence of diabetes, or baseline serum total testosterone. However, absolute IIEF-15 scores reached during testosterone treatment were subject to thresholds in patient age and baseline serum total testosterone. Testosterone significantly improved Aging Males' Symptoms score, and some 12-item or 36-item Short Form Survey quality of life subscores compared with placebo, but it did not significantly improve psychological symptoms (measured by Beck Depression Inventory).
INTERPRETATION: In men aged 40 years or older with baseline serum testosterone of less than 12 nmol/L, short-to-medium-term testosterone treatment could provide clinically meaningful treatment for mild erectile dysfunction, irrespective of patient age, obesity, or degree of low testosterone. However, due to more severe baseline symptoms, the absolute level of sexual function reached during testosterone treatment might be lower in older men and men with obesity.
FUNDING: National Institute for Health and Care Research Health Technology Assessment Programme.
MATERIALS AND METHODS: Sixty practicing urologists/andrologists from 23 countries contributed 382 multiple-choice-questions pertaining to varicocele management. These were condensed into an online questionnaire that was forwarded to clinicians involved in male infertility management through direct invitation. The results were analyzed for disagreement and agreement in practice patterns and, compared with the latest guidelines of international professional societies (American Urological Association [AUA], American Society for Reproductive Medicine [ASRM], and European Association of Urology [EAU]), and with evidence emerging from recent systematic reviews and meta-analyses. Additionally, an expert opinion on each topic was provided based on the consensus of 16 experts in the field.
RESULTS: The questionnaire was answered by 574 clinicians from 59 countries. The majority of respondents were urologists/uro-andrologists. A wide diversity of opinion was seen in every aspect of varicocele diagnosis, indications for repair, choice of technique, management of sub-clinical varicocele and the role of VR in azoospermia. A significant proportion of the responses were at odds with the recommendations of AUA, ASRM, and EAU. A large number of clinical situations were identified where no guidelines are available.
CONCLUSIONS: This study is the largest global survey performed to date on the clinical management of varicocele for male infertility. It demonstrates: 1) a wide disagreement in the approach to varicocele management, 2) large gaps in the clinical practice guidelines from professional societies, and 3) the need for further studies on several aspects of varicocele management in infertile men.