Displaying all 2 publications

Abstract:
Sort:
  1. Jayasingam SD, Zin T, Ngeow YF
    Int J Mycobacteriol, 2017 11 25;6(4):387-390.
    PMID: 29171453 DOI: 10.4103/ijmy.ijmy_152_17
    BACKGROUND: Rapidly growing mycobacterial species (RGM) are increasingly being recognized as the cause of various superficial and deep infections in humans. Two of the species most frequently isolated from clinical specimens are Mycobacterium abscessus and Mycobacterium fortuitum. Both species are associated with antibiotic resistances that may complicate therapy. This paper describes the pattern of resistance to five antibiotics commonly prescribed for RGM infections, in M. abscessus and M. fortuitum isolated from Malaysian patients.

    METHODS: The bacterial strains studied were examined with Etest strips to determine their minimum inhibitory concentrations (MICs) toward amikacin, ciprofloxacin, clarithromycin, imipenem, and linezolid.

    RESULTS: Among 51 M. abscessus isolates examined by the Etest, the overall MICs of ciprofloxacin, imipenem, amikacin, clarithromycin, and linezolid showed resistance rates of 33.3%, 31.4%, 2.0%, 5.9%, and 21.6%, to the five antibiotics, respectively. M. abscessus subspecies abscessus was more resistant than M. abscessus subsp. massilience to ciprofloxacin, imipenem, and linezolid but was more susceptible to clarithromycin and amikacin. M. fortuitum isolates were significantly less resistant than M. abscessus to ciprofloxacin (3.6%) and imipenem (7.1%) but more resistant to clarithromycin (42.9%) and linezolid (39.3%).

    CONCLUSION: A suitable combination therapy for Malaysian patients would be amikacin plus clarithromycin and ciprofloxacin, to cover infections by all three M. abscessus subspecies and M. fortuitum.

  2. Jayasingam SD, Citartan M, Thang TH, Mat Zin AA, Ang KC, Ch'ng ES
    Front Oncol, 2019;9:1512.
    PMID: 32039007 DOI: 10.3389/fonc.2019.01512
    Tumor-associated macrophages (TAMs) as immune cells within the tumor microenvironment have gained much interests as basic science regarding their roles in tumor progression unfolds. Better understanding of their polarization into pro-tumoral phenotype to promote tumor growth, tumor angiogenesis, immune evasion, and tumor metastasis has prompted various studies to investigate their clinical significance as a biomarker of predictive and prognostic value across different cancer types. Yet, the methodologies to investigate the polarization phenomena in solid tumor tissue vary. Nonetheless, quantifying the ratio of M1 to M2 TAMs has emerged to be a prevailing parameter to evaluate this polarization phenomena for clinical application. This mini-review focuses on recent studies exploring clinical significance of M1/M2 TAM ratio in human cancer tissue and critically evaluates the technicalities and challenges in quantifying this parameter for routine clinical practice. Immunohistochemistry appears to be the preferred methodology for M1/M2 TAM evaluation as it is readily available in clinical laboratories, albeit with certain limitations. Recommendations are made to standardize the quantification of TAMs for better transition into clinical practice and for better comparison among studies in various populations of patients and cancer types.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links