Displaying all 2 publications

Abstract:
Sort:
  1. Fenech M, Knasmueller S, Knudsen LE, Kirsch-Volders M, Deo P, Franzke B, et al.
    Mutat Res Rev Mutat Res, 2021 06 05;788:108384.
    PMID: 34893149 DOI: 10.1016/j.mrrev.2021.108384
    The purpose of the "Micronuclei and Disease" special issue (SI) is to: (i) Determine the level of evidence for association of micronuclei (MN), a biomarker of numerical and structural chromosomal aberrations, with risk of specific diseases in humans; (ii) Define plausible mechanisms that explain association of MN with each disease; (iii) Identify knowledge gaps and research needed to translate MN assays into clinical practice. The "MN and Disease" SI includes 14 papers. The first is a review of mechanisms of MN formation and their consequences in humans. 11 papers are systematic reviews and/or meta-analyses of the association of MN with reproduction, child health, inflammation, auto-immune disease, glycation, metabolic diseases, chronic kidney disease, cardiovascular disease, eleven common cancers, ageing and frailty. The penultimate paper focuses on effect of interventions on MN frequency in the elderly. A road map for translation of MN data into clinical practice is the topic of the final paper. The majority of reviewed studies were case-control studies in which the ratio of mean MN frequency in disease cases relative to controls, i.e. the mean ratio (MR), was calculated. The mean of these MR values, estimated by meta-analyses, for lymphocyte and buccal cell MN in non-cancer diseases were 2.3 and 3.6 respectively, and for cancers they were 1.7 and 2.6 respectively. The highest MR values were observed in studies of cancer cases in which MN were measured in the same tissue as the tumour (MR = 4.9-10.8). This special issue is an important milestone in the evidence supporting MN as a reliable genomic biomarker of developmental and degenerative disease risk. These advances, together with results from prospective cohort studies, are helping to identify diseases in which MN assays can be practically employed in the clinical setting to better identify high risk patients and to prioritise them for preventive therapy.
  2. Langie SA, Koppen G, Desaulniers D, Al-Mulla F, Al-Temaimi R, Amedei A, et al.
    Carcinogenesis, 2015 Jun;36 Suppl 1:S61-88.
    PMID: 26106144 DOI: 10.1093/carcin/bgv031
    Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links