Displaying all 8 publications

Abstract:
Sort:
  1. Kameyama S, Mizuguchi T, Fukuda H, Moey LH, Keng WT, Okamoto N, et al.
    J Hum Genet, 2021 Sep 17.
    PMID: 34531528 DOI: 10.1038/s10038-021-00978-y
    Biallelic variants in ZNF142 at 2q35, which encodes zinc-finger protein 142, cause neurodevelopmental disorder with seizures or dystonia. We identified compound heterozygous null variants in ZNF142, NM_001105537.4:c.[1252C>T];[1274-2A>G],p.[Arg418*];[Glu426*], in Malaysian siblings suffering from global developmental delay with epilepsy and dysmorphism. cDNA analysis showed the marked reduction of ZNF142 transcript level through nonsense-mediated mRNA decay by these novel biallelic variants. The affected siblings present with global developmental delay and epilepsy in common, which were previously described, as well as dysmorphism, which was not recognized. It is important to collect patients with ZNF142 abnormality to define its phenotypic spectrum.
  2. Hamanaka K, Imagawa E, Koshimizu E, Miyatake S, Tohyama J, Yamagata T, et al.
    Am J Hum Genet, 2020 04 02;106(4):549-558.
    PMID: 32169168 DOI: 10.1016/j.ajhg.2020.02.011
    De novo variants (DNVs) cause many genetic diseases. When DNVs are examined in the whole coding regions of genes in next-generation sequencing analyses, pathogenic DNVs often cluster in a specific region. One such region is the last exon and the last 50 bp of the penultimate exon, where truncating DNVs cause escape from nonsense-mediated mRNA decay [NMD(-) region]. Such variants can have dominant-negative or gain-of-function effects. Here, we first developed a resource of rates of truncating DNVs in NMD(-) regions under the null model of DNVs. Utilizing this resource, we performed enrichment analysis of truncating DNVs in NMD(-) regions in 346 developmental and epileptic encephalopathy (DEE) trios. We observed statistically significant enrichment of truncating DNVs in semaphorin 6B (SEMA6B) (p value: 2.8 × 10-8; exome-wide threshold: 2.5 × 10-6). The initial analysis of the 346 individuals and additional screening of 1,406 and 4,293 independent individuals affected by DEE and developmental disorders collectively identified four truncating DNVs in the SEMA6B NMD(-) region in five individuals who came from unrelated families (p value: 1.9 × 10-13) and consistently showed progressive myoclonic epilepsy. RNA analysis of lymphoblastoid cells established from an affected individual showed that the mutant allele escaped NMD, indicating stable production of the truncated protein. Importantly, heterozygous truncating variants in the NMD(+) region of SEMA6B are observed in general populations, and SEMA6B is most likely loss-of-function tolerant. Zebrafish expressing truncating variants in the NMD(-) region of SEMA6B orthologs displayed defective development of brain neurons and enhanced pentylenetetrazole-induced seizure behavior. In summary, we show that truncating DNVs in the final exon of SEMA6B cause progressive myoclonic epilepsy.
  3. Saida K, Tamaoki J, Sasaki M, Haniffa M, Koshimizu E, Sengoku T, et al.
    Clin Genet, 2021 12;100(6):722-730.
    PMID: 34569062 DOI: 10.1111/cge.14066
    Cerebellar ataxia is a genetically heterogeneous disorder. GEMIN5 encoding an RNA-binding protein of the survival of motor neuron complex, is essential for small nuclear ribonucleoprotein biogenesis, and it was recently reported that biallelic loss-of-function variants cause neurodevelopmental delay, hypotonia, and cerebellar ataxia. Here, whole-exome analysis revealed compound heterozygous GEMIN5 variants in two individuals from our cohort of 162 patients with cerebellar atrophy/hypoplasia. Three novel truncating variants and one previously reported missense variant were identified: c.2196dupA, p.(Arg733Thrfs*6) and c.1831G > A, p.(Val611Met) in individual 1, and c.3913delG, p.(Ala1305Leufs*14) and c.4496dupA, p.(Tyr1499*) in individual 2. Western blotting analysis using lymphoblastoid cell lines derived from both affected individuals showed significantly reduced levels of GEMIN5 protein. Zebrafish model for null variants p.(Arg733Thrfs*6) and p.(Ala1305Leufs*14) exhibited complete lethality at 2 weeks and recapitulated a distinct dysplastic phenotype. The phenotypes of affected individuals and the zebrafish mutant models strongly suggest that biallelic loss-of-function variants in GEMIN5 cause cerebellar atrophy/hypoplasia.
  4. Itai T, Hamanaka K, Sasaki K, Wagner M, Kotzaeridou U, Brösse I, et al.
    Hum Mutat, 2021 01;42(1):66-76.
    PMID: 33131106 DOI: 10.1002/humu.24130
    We report heterozygous CELF2 (NM_006561.3) variants in five unrelated individuals: Individuals 1-4 exhibited developmental and epileptic encephalopathy (DEE) and Individual 5 had intellectual disability and autistic features. CELF2 encodes a nucleocytoplasmic shuttling RNA-binding protein that has multiple roles in RNA processing and is involved in the embryonic development of the central nervous system and heart. Whole-exome sequencing identified the following CELF2 variants: two missense variants [c.1558C>T:p.(Pro520Ser) in unrelated Individuals 1 and 2, and c.1516C>G:p.(Arg506Gly) in Individual 3], one frameshift variant in Individual 4 that removed the last amino acid of CELF2 c.1562dup:p.(Tyr521Ter), possibly resulting in escape from nonsense-mediated mRNA decay (NMD), and one canonical splice site variant, c.272-1G>C in Individual 5, also probably leading to NMD. The identified variants in Individuals 1, 2, 4, and 5 were de novo, while the variant in Individual 3 was inherited from her mosaic mother. Notably, all identified variants, except for c.272-1G>C, were clustered within 20 amino acid residues of the C-terminus, which might be a nuclear localization signal. We demonstrated the extranuclear mislocalization of mutant CELF2 protein in cells transfected with mutant CELF2 complementary DNA plasmids. Our findings indicate that CELF2 variants that disrupt its nuclear localization are associated with DEE.
  5. Miyake N, Tsurusaki Y, Fukai R, Kushima I, Okamoto N, Ohashi K, et al.
    Eur J Hum Genet, 2023 Mar 27.
    PMID: 36973392 DOI: 10.1038/s41431-023-01335-7
    Autism spectrum disorder (ASD) is caused by combined genetic and environmental factors. Genetic heritability in ASD is estimated as 60-90%, and genetic investigations have revealed many monogenic factors. We analyzed 405 patients with ASD using family-based exome sequencing to detect disease-causing single-nucleotide variants (SNVs), small insertions and deletions (indels), and copy number variations (CNVs) for molecular diagnoses. All candidate variants were validated by Sanger sequencing or quantitative polymerase chain reaction and were evaluated using the American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines for molecular diagnosis. We identified 55 disease-causing SNVs/indels in 53 affected individuals and 13 disease-causing CNVs in 13 affected individuals, achieving a molecular diagnosis in 66 of 405 affected individuals (16.3%). Among the 55 disease-causing SNVs/indels, 51 occurred de novo, 2 were compound heterozygous (in one patient), and 2 were X-linked hemizygous variants inherited from unaffected mothers. The molecular diagnosis rate in females was significantly higher than that in males. We analyzed affected sibling cases of 24 quads and 2 quintets, but only one pair of siblings shared an identical pathogenic variant. Notably, there was a higher molecular diagnostic rate in simplex cases than in multiplex families. Our simulation indicated that the diagnostic yield is increasing by 0.63% (range 0-2.5%) per year. Based on our simple simulation, diagnostic yield is improving over time. Thus, periodical reevaluation of ES data should be strongly encouraged in undiagnosed ASD patients.
  6. Uchiyama Y, Yamaguchi D, Iwama K, Miyatake S, Hamanaka K, Tsuchida N, et al.
    Hum Mutat, 2021 01;42(1):50-65.
    PMID: 33131168 DOI: 10.1002/humu.24129
    Many algorithms to detect copy number variations (CNVs) using exome sequencing (ES) data have been reported and evaluated on their sensitivity and specificity, reproducibility, and precision. However, operational optimization of such algorithms for a better performance has not been fully addressed. ES of 1199 samples including 763 patients with different disease profiles was performed. ES data were analyzed to detect CNVs by both the eXome Hidden Markov Model (XHMM) and modified Nord's method. To efficiently detect rare CNVs, we aimed to decrease sequencing biases by analyzing, at the same time, the data of all unrelated samples sequenced in the same flow cell as a batch, and to eliminate sex effects of X-linked CNVs by analyzing female and male sequences separately. We also applied several filtering steps for more efficient CNV selection. The average number of CNVs detected in one sample was <5. This optimization together with targeted CNV analysis by Nord's method identified pathogenic/likely pathogenic CNVs in 34 patients (4.5%, 34/763). In particular, among 142 patients with epilepsy, the current protocol detected clinically relevant CNVs in 19 (13.4%) patients, whereas the previous protocol identified them in only 14 (9.9%) patients. Thus, this batch-based XHMM analysis efficiently selected rare pathogenic CNVs in genetic diseases.
  7. Sakamoto M, Iwama K, Sasaki M, Ishiyama A, Komaki H, Saito T, et al.
    Genet Med, 2022 Dec;24(12):2453-2463.
    PMID: 36305856 DOI: 10.1016/j.gim.2022.08.007
    PURPOSE: Cerebellar hypoplasia and atrophy (CBHA) in children is an extremely heterogeneous group of disorders, but few comprehensive genetic studies have been reported. Comprehensive genetic analysis of CBHA patients may help differentiating atrophy and hypoplasia and potentially improve their prognostic aspects.

    METHODS: Patients with CBHA in 176 families were genetically examined using exome sequencing. Patients with disease-causing variants were clinically evaluated.

    RESULTS: Disease-causing variants were identified in 96 of the 176 families (54.5%). After excluding 6 families, 48 patients from 42 families were categorized as having syndromic associations with CBHA, whereas the remaining 51 patients from 48 families had isolated CBHA. In 51 patients, 26 aberrant genes were identified, of which, 20 (76.9%) caused disease in 1 family each. The most prevalent genes were CACNA1A, ITPR1, and KIF1A. Of the 26 aberrant genes, 21 and 1 were functionally annotated to atrophy and hypoplasia, respectively. CBHA+S was more clinically severe than CBHA-S. Notably, ARG1 and FOLR1 variants were identified in 2 families, leading to medical treatments.

    CONCLUSION: A wide genetic and clinical diversity of CBHA was revealed through exome sequencing in this cohort, which highlights the importance of comprehensive genetic analyses. Furthermore, molecular-based treatment was available for 2 families.

  8. Sekiguchi F, Tsurusaki Y, Okamoto N, Teik KW, Mizuno S, Suzumura H, et al.
    J Hum Genet, 2019 Dec;64(12):1173-1186.
    PMID: 31530938 DOI: 10.1038/s10038-019-0667-4
    Coffin-Siris syndrome (CSS, MIM#135900) is a congenital disorder characterized by coarse facial features, intellectual disability, and hypoplasia of the fifth digit and nails. Pathogenic variants for CSS have been found in genes encoding proteins in the BAF (BRG1-associated factor) chromatin-remodeling complex. To date, more than 150 CSS patients with pathogenic variants in nine BAF-related genes have been reported. We previously reported 71 patients of whom 39 had pathogenic variants. Since then, we have recruited an additional 182 CSS-suspected patients. We performed comprehensive genetic analysis on these 182 patients and on the previously unresolved 32 patients, targeting pathogenic single nucleotide variants, short insertions/deletions and copy number variations (CNVs). We confirmed 78 pathogenic variations in 78 patients. Pathogenic variations in ARID1B, SMARCB1, SMARCA4, ARID1A, SOX11, SMARCE1, and PHF6 were identified in 48, 8, 7, 6, 4, 1, and 1 patients, respectively. In addition, we found three CNVs including SMARCA2. Of particular note, we found a partial deletion of SMARCB1 in one CSS patient and we thoroughly investigated the resulting abnormal transcripts.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links