Displaying all 4 publications

Abstract:
Sort:
  1. Andersen ZJ, Pedersen M, Weinmayr G, Stafoggia M, Galassi C, Jørgensen JT, et al.
    Neuro-oncology, 2018 02 19;20(3):420-432.
    PMID: 29016987 DOI: 10.1093/neuonc/nox163
    Background: Epidemiological evidence on the association between ambient air pollution and brain tumor risk is sparse and inconsistent.

    Methods: In 12 cohorts from 6 European countries, individual estimates of annual mean air pollution levels at the baseline residence were estimated by standardized land-use regression models developed within the ESCAPE and TRANSPHORM projects: particulate matter (PM) ≤2.5, ≤10, and 2.5-10 μm in diameter (PM2.5, PM10, and PMcoarse), PM2.5 absorbance, nitrogen oxides (NO2 and NOx) and elemental composition of PM. We estimated cohort-specific associations of air pollutant concentrations and traffic intensity with total, malignant, and nonmalignant brain tumor, in separate Cox regression models, adjusting for risk factors, and pooled cohort-specific estimates using random-effects meta-analyses.

    Results: Of 282194 subjects from 12 cohorts, 466 developed malignant brain tumors during 12 years of follow-up. Six of the cohorts also had data on nonmalignant brain tumor, where among 106786 subjects, 366 developed brain tumor: 176 nonmalignant and 190 malignant. We found a positive, statistically nonsignificant association between malignant brain tumor and PM2.5 absorbance (hazard ratio and 95% CI: 1.67; 0.89-3.14 per 10-5/m3), and weak positive or null associations with the other pollutants. Hazard ratio for PM2.5 absorbance (1.01; 0.38-2.71 per 10-5/m3) and all other pollutants were lower for nonmalignant than for malignant brain tumors.

    Conclusion: We found suggestive evidence of an association between long-term exposure to PM2.5 absorbance indicating traffic-related air pollution and malignant brain tumors, and no association with overall or nonmalignant brain tumors.

  2. Jagota P, Phutrakool P, Kamble N, Dang THT, Aldaajani Z, Hatano T, et al.
    Mov Disord Clin Pract, 2024 Aug 29.
    PMID: 39206964 DOI: 10.1002/mdc3.14197
    BACKGROUND: Exercise has been demonstrated to result in improvements in physical function, cognition, and quality of life in People with Parkinson's (PwP) but its adoption is variable.

    OBJECTIVES: To investigate exercise preferences, levels, influencing factors among a diverse Parkinson's disease (PD) population, to understand exercise adoption patterns and plan informed interventions.

    METHODS: A cross-sectional survey collected data through online platforms and paper-based methods. The Exercise Index (ExI) calculated exercise level based on frequency and duration.

    RESULTS: Of 2976 PwP, 40.6% exercised regularly, 38.3% occasionally, and 21.2% did not exercise. The overall mean ExI was 18.99 ± 12.37. Factors associated with high exercise levels included exercising in groups (ExI 24-26), weightlifting (ExI 27 (highest)), using muscle-building equipment (ExI 25-26), and exercising at home following an app (ExI 26). A positive trend between ExI and varied exercise groups, locations, types, and equipment was observed. No expected benefit from exercise achieved the lowest ExI (8). Having at least two exercise-promoting factors, a bachelor's degree or higher, receiving exercise advice at initial visits, and aged ≤40 years at PD onset were strong predictors of exercise (adjust OR = 7.814; 6.981; 4.170; 3.565). Falls and "other" most troublesome PD symptoms were negative predictors (aOR = 0.359; 0.466). Barriers to exercise did not predict the odds of exercise.

    CONCLUSIONS: The study shows that PwP's exercise behavior is influenced by their exercise belief, age at PD onset, doctor's advice at initial visits, education level, symptoms, and exercise-promoting factors. High exercise levels were associated with certain types of exercises and exercising in groups.

  3. Nagel G, Stafoggia M, Pedersen M, Andersen ZJ, Galassi C, Munkenast J, et al.
    Int J Cancer, 2018 10 01;143(7):1632-1643.
    PMID: 29696642 DOI: 10.1002/ijc.31564
    Air pollution has been classified as carcinogenic to humans. However, to date little is known about the relevance for cancers of the stomach and upper aerodigestive tract (UADT). We investigated the association of long-term exposure to ambient air pollution with incidence of gastric and UADT cancer in 11 European cohorts. Air pollution exposure was assigned by land-use regression models for particulate matter (PM) below 10 µm (PM10 ), below 2.5 µm (PM2.5 ), between 2.5 and 10 µm (PMcoarse ), PM2.5 absorbance and nitrogen oxides (NO2 and NOX ) as well as approximated by traffic indicators. Cox regression models with adjustment for potential confounders were used for cohort-specific analyses. Combined estimates were determined with random effects meta-analyses. During average follow-up of 14.1 years of 305,551 individuals, 744 incident cases of gastric cancer and 933 of UADT cancer occurred. The hazard ratio for an increase of 5 µg/m3 of PM2.5 was 1.38 (95% CI 0.99; 1.92) for gastric and 1.05 (95% CI 0.62; 1.77) for UADT cancers. No associations were found for any of the other exposures considered. Adjustment for additional confounders and restriction to study participants with stable addresses did not influence markedly the effect estimate for PM2.5 and gastric cancer. Higher estimated risks of gastric cancer associated with PM2.5 was found in men (HR 1.98 [1.30; 3.01]) as compared to women (HR 0.85 [0.5; 1.45]). This large multicentre cohort study shows an association between long-term exposure to PM2.5 and gastric cancer, but not UADT cancers, suggesting that air pollution may contribute to gastric cancer risk.
  4. Andersen ZJ, Stafoggia M, Weinmayr G, Pedersen M, Galassi C, Jørgensen JT, et al.
    Environ Health Perspect, 2017 10 13;125(10):107005.
    PMID: 29033383 DOI: 10.1289/EHP1742
    BACKGROUND: Epidemiological evidence on the association between ambient air pollution and breast cancer risk is inconsistent.

    OBJECTIVE: We examined the association between long-term exposure to ambient air pollution and incidence of postmenopausal breast cancer in European women.

    METHODS: In 15 cohorts from nine European countries, individual estimates of air pollution levels at the residence were estimated by standardized land-use regression models developed within the European Study of Cohorts for Air Pollution Effects (ESCAPE) and Transport related Air Pollution and Health impacts – Integrated Methodologies for Assessing Particulate Matter (TRANSPHORM) projects: particulate matter (PM) ≤2.5μm, ≤10μm, and 2.5–10μm in diameter (PM2.5, PM10, and PMcoarse, respectively); PM2.5 absorbance; nitrogen oxides (NO2 and NOx); traffic intensity; and elemental composition of PM. We estimated cohort-specific associations between breast cancer and air pollutants using Cox regression models, adjusting for major lifestyle risk factors, and pooled cohort-specific estimates using random-effects meta-analyses.

    RESULTS: Of 74,750 postmenopausal women included in the study, 3,612 developed breast cancer during 991,353 person-years of follow-up. We found positive and statistically insignificant associations between breast cancer and PM2.5 {hazard ratio (HR)=1.08 [95% confidence interval (CI): 0.77, 1.51] per 5 μg/m3}, PM10 [1.07 (95% CI: 0.89, 1.30) per 10 μg/m3], PMcoarse[1.20 (95% CI: 0.96, 1.49 per 5 μg/m3], and NO2 [1.02 (95% CI: 0.98, 1.07 per 10 μg/m3], and a statistically significant association with NOx [1.04 (95% CI: 1.00, 1.08) per 20 μg/m3, p=0.04].

    CONCLUSIONS: We found suggestive evidence of an association between ambient air pollution and incidence of postmenopausal breast cancer in European women. https://doi.org/10.1289/EHP1742.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links