Displaying all 6 publications

Abstract:
Sort:
  1. Le TH, Blair D, McManus DP
    Ann Trop Med Parasitol, 2002 Mar;96(2):155-64.
    PMID: 12080976
    Recent electrophoretic data have indicated that Schistosoma japonicum in mainland China may be a species complex, with the existence of a cryptic species being predicted from the analysis of schistosome populations from Sichuan province. To investigate the Sichuan form of S. japonicum, 4.9 kbp of mitochondrial DNA from each of three samples of the parasite from China (two from Sichuan and one from Hunan) and one from Sorsogon in the Philippines were amplified, sequenced and characterized. The sequence data were compared with those from the related South-east Asian species of S. mekongi (Khong Island, Laos) and S. mlayensis (Baling, Malaysia) and that from S. japonicm from Anhui (China). At both the nucleotide and amino-acid levels, the variation among the five S. japonicum samples was limited (< 1%). This was consistent with the conclusions drawn from previous molecular studies, in which minimal variation among S. japonicum populations was also detected. In contrast, S. mekongi and S. malayensis, species recognized as separate but closely related, differ from each other by about 10%, and each differs by 25%-26% from S. japonicum. Phylogenetic trees provided a graphic representation of these differences, showing all S. japonicum sequences to be very tightly clustered and distant from S. mekongi and S. malayensis, the last two being clearly distinct from each other. The results thus indicate no significant intra-specific genetic variation among S. japonicum samples collected from different geographical areas and do not support the idea of a distinct form in Sichuan.
  2. Le TH, Anh NT, Nguyen KT, Nguyen NT, Thuy do TT, Gasser RB
    Infect Genet Evol, 2016 Jan;37:94-8.
    PMID: 26584512 DOI: 10.1016/j.meegid.2015.11.009
    Toxocara canis of canids is a parasitic nematode (ascaridoid) that infects humans and other hosts, causing different forms of toxocariasis. This species of Toxocara appears to be the most important cause of human disease, likely followed by Toxocara cati from felids. Although some studies from Malaysia and China have shown that cats can harbor another congener, T. malaysiensis, no information is available about this parasite for other countries. Moreover, the zoonotic potential of this parasite is unknown at this point. In the present study, we conducted the first investigation of domestic dogs and cats for Toxocara in Vietnam using molecular tools. Toxocara malaysiensis was identified as a common ascaridoid of domestic cats (in the absence of T. cati), and T. canis was commonly found in dogs. Together with findings from previous studies, the present results emphasize the need to explore the significance and zoonotic potential of T. malaysiensis in Vietnam and other countries where this parasite is endemic and prevalent in cats.
  3. Le TH, Humair PF, Blair D, Agatsuma T, Littlewood DT, McManus DP
    Mol Biochem Parasitol, 2001 Sep 28;117(1):61-71.
    PMID: 11551632
    Complete sequences were obtained for the coding portions of the mitochondrial (mt) genomes of Schistosoma mansoni (NMRI strain, Puerto Rico; 14 415 bp), S. japonicum (Anhui strain, China; 14 085 bp) and S. mekongi (Khong Island, Laos; 14 072 bp). Each comprises 36 genes: 12 protein-encoding genes (cox1-3, nad1-6, nad4L, atp6 and cob); two ribosomal RNAs, rrnL (large subunit rRNA or 16S) and rrnS (small subunit rRNA or 12S); as well as 22 transfer RNA (tRNA) genes. The atp8 gene is absent. A large segment (9.6 kb) of the coding region (comprising 14 tRNAs, eight complete and two incomplete protein-encoding genes) for S. malayensis (Baling, Malaysian Peninsula) was also obtained. Each genome also possesses a long non-coding region that is divided into two parts (a small and a large non-coding region, the latter not fully sequenced in any species) by one or more tRNAs. The protein-encoding genes are similar in size, composition and codon usage in all species except for cox1 in S. mansoni (609 aa) and cox2 in S. mekongi (219 aa), both of which are longer than homologues in other species. An unexpected finding in all the Schistosoma species was the presence of a leucine zipper motif in the nad4L gene. The gene order in S. mansoni is strikingly different from that seen in the S. japonicum group and other flatworms. There is a high level of identity (87-94% at both the nucleotide and amino acid levels) for all protein-encoding genes of S. mekongi and S. malayensis. The identity between genes of these two species and those of S. japonicum is less (56-83% for amino acids and 73-79% for nucleotides). The identity between the genes of S. mansoni and the Asian schistosomes is far less (33-66% for amino acids and 54-68% for nucleotides), an observation consistent with the known phylogenetic distance between S. mansoni and the other species.
  4. Duong TY, Pham LTK, Le XTK, Nguyen NTT, Nor AM, Le TH
    Zool Stud, 2023;62:e48.
    PMID: 37965298 DOI: 10.6620/ZS.2023.62-48
    Pangasiidae (catfish order: Siluriformes) comprises 30 valid catfish species in four genera: Pangasius, Pangasianodon, Helicophagus, and Pseudolais. Their systematics are frequently revised due to the addition of newly described species. Although Pangasiidae is known to be a monophyletic family, the generic and phylogenetic relationships among the taxa are poorly resolved. This study characterized three newly obtained complete mitogenomes of Mekong River catfishes from Vietnam (Pangasius mekongensis, Pangasius krempfi, and Pangasianodon hypophthalmus), as well as the inter-and intrafamilial relationships of the Pangasiidae and catfish families in Siluroidei. The genomic features of their mitogenomes were similar to those of previously reported pangasiids, including all regulatory elements, extended terminal associated sequences (ETAS), and conserved sequence blocks (CSBs) (CSB-1, CSB-2, CSB-3, and CSBs, A to F) in the control region. A comprehensive phylogeny constructed from datasets of multiple 13 PCG sequences from 117 complete mitogenomes of 32 recognized siluriform families established Pangasiidae as monophyletic and a sister group of Austroglanididae. The [Pangasiidae + Austroglanididae] + (Ictaluridae + Cranoglanididae) + Ariidae] clade is a sister to the "Big Africa" major clade of Siluriformes. Furthermore, both phylogenies constructed from the single barcodes (83 partial cox1 and 80 partial cytB, respectively) clearly indicate genus relationships within Pangasiidae. Pangasianodon was monophyletic and a sister to the (Pangasius + Helicophagus + Pseudolais) group. Within the genus Pangasius, P. mekongensis was placed as a sister taxon to P. pangasius. Pangasius sanitwongsei was found to be related to and grouped with Pangasianodon, but in single-gene phylogenies, it was assigned to the Pangasius + Helicophagus + Pseudolais group. The datasets in this study are useful for studying pangasiid systematics, taxonomy and evolution.
  5. Duong TY, Nguyen NT, Tran DD, Le TH, Nor SAM
    Ecol Evol, 2023 Feb;13(2):e9845.
    PMID: 36820247 DOI: 10.1002/ece3.9845
    Population genetic structure of migratory fishes can reflect ecological and evolutionary processes. Pangasius krempfi is a critically important anadromous catfish in the Mekong River, and its migration pathways and genetic structure have attracted much interest. To investigate, we quantified the genetic diversity of this species using the control region (D-loop) and Cytochrome b (Cytb) of the mitochondrial genome. Fish were sampled (n = 91) along the Mekong tributaries from upstream to estuaries and coastal areas in the Mekong Delta and compared to three samples from Pakse (Laos). The D-loop haplotype (0.941 ± 0.014) and nucleotide diversity (0.0083 ± 0.0005) were high in all populations, but that of Cytb was low (0.331 ± 0.059 and 0.00063 ± 0.00011, respectively). No genetic difference was detected between populations, indicating strong gene flow and confirming a long migration distance for this species. Pangasius krempfi was not genetically structured according to geographical populations but was delineated into three haplogroups, suggesting multiple genetic lineages. The presence of haplogroups in each sampling location implies that migration downstream is random but parallel when the fish enter two river tributaries bifurcating from the main Mekong River. Individuals can also migrate along the coast, far from the estuaries, suggesting a longer migration path than previously reported, which is crucial for maintaining diverse genetic origin and migration pathways for P. krempfi.
  6. Tran HT, Lin C, Lam SS, Le TH, Hoang HG, Bui XT, et al.
    Environ Pollut, 2023 Jan 01;316(Pt 2):120640.
    PMID: 36403881 DOI: 10.1016/j.envpol.2022.120640
    Di-(2-ethylhexyl) phthalate (DEHP), a plasticizer derived from phthalate ester, is used as an additive in industrial products such as plastics, paints, and medical devices. However, DEHP is known as an endocrine-disrupting chemical, causing cancers and adverse effects on human health. This study evaluated DEHP biodegradation efficiency via food waste composting during 35 days of incubation. At high DEHP concentrations (2167 mg kg-1) in food waste compost mixture, the DEHP biodegradation efficiency was 99% after 35 days. The highest degradation efficiency was recorded at the thermophilic phase (day 3 - day 11) with the biodegradation rate reached 187 mg kg-1 day-1. DEHP was metabolized to dibutyl phthalate (DBP) and dimethyl phthalate (DMP) and would be oxidized to benzyl alcohol (BA) and mineralized into CO2 and water via various metabolisms. Finally, the compost's quality with residual DEHP was evaluated using Brassica chinensis L. seeds via 96 h of germination tests. The compost (at day 35) with a trace amount of DEHP as the end product showed no significant effect on the germination rate of Brassica chinensis L. seeds (88%) compared to that without DEHP (94%), indicating that the compost can be reused as fertilizer in agricultural applications. These results provide an improved understanding of the DEHP biodegradation via food waste composting without bioaugmentation and hence facilitating its green remediation and conversion into value-added products. Nevertheless, further studies are needed on DEHP biodegradation in large-scale food waste composting or industrial applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links