Displaying all 2 publications

Abstract:
Sort:
  1. Hall JMM, Nguyen TV, Dinsmore AW, Perugini D, Perugini M, Fukunaga N, et al.
    Reprod Biomed Online, 2024 Dec;49(6):104403.
    PMID: 39433005 DOI: 10.1016/j.rbmo.2024.104403
    RESEARCH QUESTION: Can federated learning be used to develop an artificial intelligence (AI) model for evaluating oocyte competence using two-dimensional images of denuded oocytes in metaphase II prior to intracytoplasmic sperm injection (ICSI)?

    RESULTS: The oocyte AI model demonstrated area under the curve (AUC) up to 0.65 on two blind test datasets. High sensitivity for predicting competent oocytes (83-88%) was offset by lower specificity (26-36%). Exclusion of confounding biological variables (male factor infertility and maternal age ≥35 years) improved AUC up to 14%, primarily due to increased specificity. AI score correlated with size of the zona pellucida and perivitelline space, and ooplasm appearance. AI score also correlated with blastocyst expansion grade and morphological quality. The sum of AI scores from oocytes in group culture images predicted the formation of two or more usable blastocysts (AUC 0.77).

    CONCLUSION: An AI model to evaluate oocyte competence was developed using federated learning, representing an essential step in protecting patient data. The AI model was significantly predictive of oocyte competence, as defined by usable blastocyst formation, which is a critical factor for IVF success. Potential clinical utility ranges from selective oocyte fertilization to guiding treatment decisions regarding additional rounds of oocyte retrieval.

    DESIGN: In total, 10,677 oocyte images with associated metadata were collected prospectively by eight IVF clinics across six countries. AI training used federated learning, where data were retained on regional servers to comply with data privacy laws. The final AI model required a single image as input to evaluate oocyte competence, which was defined by the formation of a usable blastocyst (≥expansion grade 3 by day 5 or 6 post ICSI).

  2. Diakiw SM, Hall JMM, VerMilyea M, Lim AYX, Quangkananurug W, Chanchamroen S, et al.
    Reprod Biomed Online, 2022 Dec;45(6):1105-1117.
    PMID: 36117079 DOI: 10.1016/j.rbmo.2022.07.018
    RESEARCH QUESTION: Can better methods be developed to evaluate the performance and characteristics of an artificial intelligence model for evaluating the likelihood of clinical pregnancy based on analysis of day-5 blastocyst-stage embryos, such that performance evaluation more closely reflects clinical use in IVF procedures, and correlations with known features of embryo quality are identified?

    DESIGN: De-identified images were provided retrospectively or collected prospectively by IVF clinics using the artificial intelligence model in clinical practice. A total of 9359 images were provided by 18 IVF clinics across six countries, from 4709 women who underwent IVF between 2011 and 2021. Main outcome measures included clinical pregnancy outcome (fetal heartbeat at first ultrasound scan), embryo morphology score, and/or pre-implantation genetic testing for aneuploidy (PGT-A) results.

    RESULTS: A positive linear correlation of artificial intelligence scores with pregnancy outcomes was found, and up to a 12.2% reduction in time to pregnancy (TTP) was observed when comparing the artificial intelligence model with standard morphological grading methods using a novel simulated cohort ranking method. Artificial intelligence scores were significantly correlated with known morphological features of embryo quality based on the Gardner score, and with previously unknown morphological features associated with embryo ploidy status, including chromosomal abnormalities indicative of severity when considering embryos for transfer during IVF.

    CONCLUSION: Improved methods for evaluating artificial intelligence for embryo selection were developed, and advantages of the artificial intelligence model over current grading approaches were highlighted, strongly supporting the use of the artificial intelligence model in a clinical setting.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links