Osteoarthritis (OA) is a degenerative disorder of the cartilage and is one of the leading causes of disability, particularly amongst the elderly, wherein patients with advanced-stage OA experience chronic pain and functional impairment of the limbs, thus resulting in a significantly reduced quality of life. The currently available treatments primarily revolve around symptom management, and is thus palliative rather than curative. The aim of the present review is to briefly discuss the limitations of some of the currently available treatments for patients with OA, and highlight the value of the potential use of stem cells in cellular therapy, which is widely regarded as the breakthrough that can address the present unmet medical needs for treatment of degenerative diseases, such as OA. The advantages of stem cell therapy, particularly mesenchymal stem cells, and the challenges involved are also discussed in this review.
Dementia, particularly Alzheimer's Disease (AD), has links to several modifiable risk factors, especially physical inactivity. When considering the relationship between physcial activity and dementia risk, cognitive benefits are generally attributed to aerobic exercise, with resistance exercise (RE) receiving less attention. This review aims to address this gap by evaluating the impact of RE on brain structures and cognitive deficits associated with AD. Drawing insights from randomized controlled trials (RCTs) utilizing structural neuroimaging, the specific influence of RE on AD-affected brain structures and their correlation with cognitive function are discussed. Preliminary findings suggest that RE induces structural brain changes in older adults that could reduce the risk of AD or mitigate AD progression. Importantly, the impacts of RE appear to follow a dose-response effect, reversing pathological structural changes and improving associated cognitive functions if performed at least twice per week for at least six months, with greatest effects in those already experiencing some element of cognitive decline. While more research is eagerly awaited, this review contributes insights into the potential benefits of RE for cognitive health in the context of AD-related changes in brain structure and function.