Displaying all 2 publications

Abstract:
Sort:
  1. Abdar M, Książek W, Acharya UR, Tan RS, Makarenkov V, Pławiak P
    Comput Methods Programs Biomed, 2019 Oct;179:104992.
    PMID: 31443858 DOI: 10.1016/j.cmpb.2019.104992
    BACKGROUND AND OBJECTIVE: Coronary artery disease (CAD) is one of the commonest diseases around the world. An early and accurate diagnosis of CAD allows a timely administration of appropriate treatment and helps to reduce the mortality. Herein, we describe an innovative machine learning methodology that enables an accurate detection of CAD and apply it to data collected from Iranian patients.

    METHODS: We first tested ten traditional machine learning algorithms, and then the three-best performing algorithms (three types of SVM) were used in the rest of the study. To improve the performance of these algorithms, a data preprocessing with normalization was carried out. Moreover, a genetic algorithm and particle swarm optimization, coupled with stratified 10-fold cross-validation, were used twice: for optimization of classifier parameters and for parallel selection of features.

    RESULTS: The presented approach enhanced the performance of all traditional machine learning algorithms used in this study. We also introduced a new optimization technique called N2Genetic optimizer (a new genetic training). Our experiments demonstrated that N2Genetic-nuSVM provided the accuracy of 93.08% and F1-score of 91.51% when predicting CAD outcomes among the patients included in a well-known Z-Alizadeh Sani dataset. These results are competitive and comparable to the best results in the field.

    CONCLUSIONS: We showed that machine-learning techniques optimized by the proposed approach, can lead to highly accurate models intended for both clinical and research use.

  2. Abdar M, Wijayaningrum VN, Hussain S, Alizadehsani R, Plawiak P, Acharya UR, et al.
    J Med Syst, 2019 Jun 07;43(7):220.
    PMID: 31175462 DOI: 10.1007/s10916-019-1343-0
    Wart disease (WD) is a skin illness on the human body which is caused by the human papillomavirus (HPV). This study mainly concentrates on common and plantar warts. There are various treatment methods for this disease, including the popular immunotherapy and cryotherapy methods. Manual evaluation of the WD treatment response is challenging. Furthermore, traditional machine learning methods are not robust enough in WD classification as they cannot deal effectively with small number of attributes. This study proposes a new evolutionary-based computer-aided diagnosis (CAD) system using machine learning to classify the WD treatment response. The main architecture of our CAD system is based on the combination of improved adaptive particle swarm optimization (IAPSO) algorithm and artificial immune recognition system (AIRS). The cross-validation protocol was applied to test our machine learning-based classification system, including five different partition protocols (K2, K3, K4, K5 and K10). Our database consisted of 180 records taken from immunotherapy and cryotherapy databases. The best results were obtained using the K10 protocol that provided the precision, recall, F-measure and accuracy values of 0.8908, 0.8943, 0.8916 and 90%, respectively. Our IAPSO system showed the reliability of 98.68%. It was implemented in Java, while integrated development environment (IDE) was implemented using NetBeans. Our encouraging results suggest that the proposed IAPSO-AIRS system can be employed for the WD management in clinical environment.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links